Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important first steps for revealing the molecular sensitive targets in cells lethally challenged by exposure to copper surfaces and provide a scientific explanation for the use of copper surfaces as antimicrobial agents for supporting public hygiene.
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC 2 (3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated.
The construct of mild cognitive impairment (MCI) has been proposed to identify patients at risk of developing Alzheimer's disease (AD) in the pre-clinical stage. Although subjects with MCI have an increased risk of progressing to dementia, most remain stable or return to normality. The new criteria for diagnosing prodromal AD assume that, to increase the predictive value of the MCI, in addition to a defect of delayed recall there must also be the presence of abnormal biomarkers, investigating structural and molecular neuroimaging and cerebrospinal fluid (CSF) analysis of amyloid-β or tau proteins. Although acknowledging that the use of CSF degeneration biomarkers is advisable not only for research, but also for clinical purposes, the present review is centered upon the neuropsychological markers of conversion to AD, which are equally clinically important. In particular, results of this review suggest the following: (a) measures of delayed recall are the best neuropsychological predictors of conversion from MCI to AD; (b) memory tests providing controlled encoding and cued recall are not necessarily better predictors than free recall tests; (c) stringent cut-off points are necessary to increase the specificity of these predictors; (d) multi-domain amnestic MCI patients are the best candidates for clinical trials, but not for treatment with disease-modifying drugs; and (e) not only episodic but also semantic memory is significantly impaired in patients who will convert to AD. These data and the underlying neural mechanisms will be discussed, trying to distinguish results obtained in MCI patients from those obtained in a pre-MCI stage of the AD progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.