Behavioral and neuropsychological studies suggest that real actions and pantomimed actions tap, at least in part, different neural systems. Inspired by studies showing weight-attunement in real grasps, here we asked whether (and to what extent) kinematics of pantomimed reach-to-grasp movement can reveal the weight of the pretended target. To address this question, we instructed participants (n = 15) either to grasp or pretend to grasp toward two differently weighted objects, i.e., a light object and heavy object. Using linear discriminant analysis, we then proceeded to classify the weight of the target – either real or pretended – on the basis of the recorded movement patterns. Classification analysis revealed that pantomimed reach-to-grasp movements retained information about object weight, although to a lesser extent than real grasp movements. These results are discussed in relation to the mechanisms underlying the control of real and pantomimed grasping movements.
Professional magicians regularly use pantomimed grasps (i.e., movements towards imagined objects) to deceive audiences. To do so, they learn to shape their hands similarly for real and pantomimed grasps. Here we tested whether this form of motor expertise provides them a significant benefit when processing pantomimed grasps. To this aim, in a one-interval discrimination design, we asked 17 professional magicians and 17 naïve controls to watch video clips of reach-to-grasp movements recorded from naïve participants and judge whether the observed movement was real or pantomimed. All video clips were edited to spatially occlude the grasped object (either present or imagined). Data were analysed within a drift diffusion model approach. Fitting different models showed that, whereas magicians and naïve performed similarly when observing real grasps, magicians had a specific advantage compared with naïve at discriminating pantomimed grasps. These findings suggest that motor expertise may be crucial for detecting relevant cues from hand movement during the discrimination of pantomimed grasps. Results are discussed in terms of motor recalibration.
Action and vision are known to be tightly coupled with each other. In a previous study, we found that repeatedly grasping an object without any visual feedback might result in a perceptual aftereffect when the object was visually presented in the context of a perceptual judgement task. In this study, we explored whether and how such an effect could be modulated by presenting the object behind a transparent barrier. Our conjecture was that if perceptual judgment relies, in part at least, on the same processes and representations as those involved in action, then one should expect to find a slowdown in judgment performance when the target object looks to be out of reach. And this was what we actually found. This indicates that not only acting upon an object but also being prevented from acting upon it can affect how the object is perceptually judged.
How deeply does action influence perception? Does action performance affect the perception of object features directly related to action only? Or does it concern also object features such as colors, which are not held to directly afford action? The present study aimed at answering these questions. We asked participants to repeatedly grasp a handled mug hidden from their view before judging whether a visually presented mug was blue rather than cyan. The motor training impacted on their perceptual judgments, by speeding participants’ responses, when the handle of the presented mug was spatially aligned with the trained hand. The priming effect did not occur when participants were trained to merely touch the mug with their hand closed in a fist. This indicates that action performance may shape the perceptual judgment on object features, even when these features are colors and do not afford any action. How we act on surrounding objects is therefore not without consequence for how we experience them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.