Background Mitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined. Methods We measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19. Results Circulating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy. Conclusion These results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes. Funding Washington University Institute of Clinical Translational Sciences COVID-19 Research Program and Washington University Institute of Clinical Translational Sciences (ICTS) NIH grant UL1TR002345.
Ischemia-reperfusion injury, a form of sterile inflammation, is the leading risk factor for both short-term mortality following pulmonary transplantation and chronic lung allograft dysfunction. While it is well recognized that neutrophils are critical mediators of acute lung injury, processes that guide their entry into pulmonary tissue are not well understood. Here, we found that CCR2+ classical monocytes are necessary and sufficient for mediating extravasation of neutrophils into pulmonary tissue during ischemia-reperfusion injury following hilar clamping or lung transplantation. The classical monocytes were mobilized from the host spleen, and splenectomy attenuated the recruitment of classical monocytes as well as the entry of neutrophils into injured lung tissue, which was associated with improved graft function. Neutrophil extravasation was mediated by MyD88-dependent IL-1β production by graft-infiltrating classical monocytes, which downregulated the expression of the tight junction-associated protein ZO-2 in pulmonary vascular endothelial cells. Thus, we have uncovered a crucial role for classical monocytes, mobilized from the spleen, in mediating neutrophil extravasation, with potential implications for targeting of recipient classical monocytes to ameliorate pulmonary ischemia-reperfusion injury in the clinic.
Neutrophils are often viewed as non-specialized effector cells whose presence is a simple indicator of tissue inflammation. There is new evidence that neutrophils exist in subsets and have specialized effector functions that include extracellular trap generation and the stimulation of angiogenesis. The application of intravital imaging to transplanted organs has revealed novel requirements for neutrophil trafficking into graft tissue and illuminated direct interactions between neutrophils and other leukocytes that promote alloimmunity. Paradoxically, retaining some neutrophilia may be important to induce or maintain tolerance. Neutrophils can stimulate anti-inflammatory signals in other phagocytes and release molecules that inhibit T cell activation. Here we will review the available evidence of how neutrophils regulate acute and chronic inflammation in transplanted organs and discuss the possibility of targeting these cells to promote tolerance.
Autophagy is the main cellular pathway for degradation of long-lived proteins and organelles and regulates cell fate in response to stress. Beclin 1 is a key regulator of this process. In some settings autophagy and apoptosis seem to be interconnected. Recent reports indicate that fibroblasts in idiopathic pulmonary fibrosis (IPF) acquire resistance to apoptosis. Here, we examined the expression of beclin 1, and of the anti apoptotic protein Bcl-2 in human IPF fibroblasts using immunohistochemistry and molecular biology in bioptic sections, in primary cultures of fibroblasts taken from patients with IPF and in fibroblast cell lines. Expression of beclin 1 in fibroblasts from IPF was down-regulated in comparison with fibroblasts from normal lungs while the anti-apoptotic protein Bcl-2 expression was over-expressed. Treatment of fibroblast cell cultures with cisplatin induced a significant increase in beclin 1 and caspase 3 protein levels but a reduction in Bcl-2 expression. These observations were confirmed by the analysis of acid compartments and transmission electron microscopy. Our results demonstrate a modified expression of the apoptotic beclin 1 Bcl-2 proteins in human IPF fibroblasts suggesting the existence of an autophagy/apoptosis system dysfunction.
Acute lung injury (ALI) is a heterogeneous inflammatory condition associated with high morbidity and mortality. Neutrophils play a key role in the development of different forms of ALI, and the release of neutrophil extracellular traps (NETs) is emerging as a common pathogenic mechanism. NETs are essential in controlling pathogens, and their defective release or increased degradation leads to a higher risk of infection. However, NETs also contain several pro-inflammatory and cytotoxic molecules than can exacerbate thromboinflammation and lung tissue injury. To reduce NET-mediated lung damage and inflammation, DNase is frequently used in preclinical models of ALI due to its capability of digesting NET DNA scaffold. Moreover, recent advances in neutrophil biology led to the development of selective NET inhibitors, which also appear to reduce ALI in experimental models. Here we provide an overview of the role of NETs in different forms of ALI discussing existing gaps in our knowledge and novel therapeutic approaches to modulate their impact on lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.