Vitamin B 6 is essential in all organisms, due to its requirement as a cofactor in the form of pyridoxal 5-phosphate (PLP) for key metabolic enzymes. It can be synthesized de novo by either of two pathways known as deoxyxylulose 5-phosphate (DXP)-dependent and DXP-independent. The DXP-independent pathway is the predominant pathway and is found in most microorganisms and plants. A glutamine amidotransferase consisting of the synthase Pdx1 and its glutaminase partner, Pdx2, form a complex that directly synthesizes PLP from ribose 5-phosphate, glyceraldehyde 3-phosphate, and glutamine. The protein complex displays an ornate architecture consisting of 24 subunits, two hexameric rings of 12 Pdx1 subunits to which 12 Pdx2 subunits attach, with the glutaminase and synthase active sites remote from each other. The multiple catalytic ability of Pdx1, the remote glutaminase and synthase active sites, and the elaborate structure suggest regulation of activity on several levels. A missing piece in deciphering this intricate puzzle has been information on the Pdx1 C-terminal region that has thus far eluded structural characterization. Here we use fluorescence spectrophotometry and protein chemistry to demonstrate that the Pdx1 C terminus is indispensable for PLP synthase activity and mediates intersubunit cross-talk within the enzyme complex. We provide evidence that the C terminus can act as a flexible lid, bridging as well as shielding the active site of an adjacent protomer in Pdx1. We show that ribose 5-phosphate binding triggers strong cooperativity in Pdx1, and the affinity for this substrate is substantially enhanced upon interaction with the Michaelis complex of Pdx2 and glutamine.
Summary• Vitamin B6 is an essential metabolite that has recently been implicated in defense against cellular oxidative stress. In fungi, the de novo biosynthetic pathway of vitamin B6 involves two genes, PDX1 and PDX2. Here, we report a component of the PDX1/ PDX2 vitamin B6 biosynthetic pathway in an arbuscular mycorrhizal (AM) fungus.• Using rapid amplification of cDNA ends, we isolated the full-length cDNA of a PDX-like gene, GintPDX1, from Glomus intraradices. GintPDX1 expression was analysed by real-time reverse transcription-polymerase chain reaction (RT-PCR). GintPDX1 activity and function were investigated by heterologous complementation of the yeast strain Δsnz1, which is deficient in vitamin B6 biosynthesis.• Sequence data revealed that GintPDX1 is highly homologous to other identified PDX1 proteins. GintPDX1 restores prototrophy to the vitamin B6 auxotrophic yeast mutant and reverts its superoxide sensitivity. GintPDX1 is expressed throughout the fungal life cycle, with the highest transcription levels found in the intraradical fungal structures. GintPDX1 expression was induced in response to hydrogen peroxide, paraquat and copper.• The results demonstrate that AM fungi possess at least one component of the machinery necessary for vitamin B6 biosynthesis. Transcriptional regulation of GintPDX1 suggests a role for vitamin B6 as an antioxidant and modulator of reactive oxygen species in G. intraradices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.