Neurons firing both during self and other's motor behavior (mirror neurons) have been described in the brain of vertebrates including humans. The activation of somatic motor programs driven by perceived behavior has been taken as evidence for mirror neurons' contribution to cognition. The inverse relation, that is the influence of motor behavior on perception, is needed for demonstrating the long-hypothesized causal role of mirror neurons in action understanding. We provide here conclusive behavioral and neurophysiological evidence for that causal role by means of cross-modal adaptation coupled with a novel transcranial magnetic stimulation (TMS)-adaptation paradigm. Blindfolded repeated motor performance of an object-directed action (push or pull) induced in healthy participants a strong visual after-effect when categorizing others' actions, as a result of motor-to-visual adaptation of visuo-motor neurons. TMS over the ventral premotor cortex, but not over the primary motor cortex, suppressed the after-effect, thus localizing the population of adapted visuo-motor neurons in the premotor cortex. These data are exquisitely consistent in humans with the existence of premotor mirror neurons that have access to the action meaning. We also show that controlled manipulation of the firing properties of this neural population produces strong predictable changes in the way we categorize others' actions.
The oscillatory features of non-REM sleep states have been a subject of intense research over many decades. However, a systematic spatial characterization of the spectral features of cortical activity in each sleep state is not available yet. Here, we used magnetoencephalography (MEG) and electroencephalography (EEG) recordings during night sleep. We performed source reconstruction based on the individual subject's anatomical magnetic resonance imaging (MRI) scans and spectral analysis on each non-REM sleep epoch in eight standard frequency bands, spanning the complete spectrum, and computed cortical source reconstructions of the spectral contrasts between each sleep state in comparison to the resting wakefulness. Despite not distinguishing periods of high and low activity within each sleep stage, our results provide new information about relative overall spectral changes in the non-REM sleep stages. Brain activity both during wakefulness and sleep is characterized by fluctuations in neuronal responses and rhythmic activation at various time scales. Sleep occurs periodically following a rather strict circadian rhythm and is itself a highly dynamic event, characterized by re-occurring and alternating phases of circa 80-120 minutes each, during which different polysomnographic events can be recorded 1. In each sleep stage, the brain is characterized by specific patterns of oscillatory activity. These oscillatory patterns of the sleeping brain have been described mostly using EEG. Our aim is to exploit the higher localization accuracy of magnetoencephalography (MEG) to shed new light on the spatial distribution of oscillatory features in non-REM sleep stages. The first light sleep stage (N1) is a state of drowsiness and of early loss of consciousness, physiologically characterized by a decreasing low voltage EEG frequency (2-7 Hz) 2. The following, second sleep stage (N2) is characterized by the occurrence of sleep spindles and K-complexes in the EEG signal. Spindles are rhythmic bursts of EEG activity that oscillate at a frequency between 12-15 Hz (classically named as sigma band). They have a waxing and a waning component and last for about 1 sec at a time 3,4. K-complexes are variable patterns of sudden bursts consisting mostly of a high voltage diphasic slow wave, especially in N2. Their brief negative peak in the EEG seems to be a signature of neuronal hyperpolarization, while its initial positive component depends on excitation of neurons. Often K-complexes co-occur with sleep spindles or may even trigger them 5. They are either spontaneous or occur in response to sudden sensory stimuli 6. As sleep deepens, subjects enter a third sleep stage, N3. This is characterized by a reduction of sleep spindles and by the emergence of low-frequency, high-amplitude fluctuations (delta waves) 7,8. In the past, some studies further distinguished between N3 and another N4 state, based on some arbitrary percentage of slow wave oscillations (e.g., >20% and >50%, respectively), but for the purpose of this study we consider them...
This study on cold‐air pool formation in the wide Cerdanya Valley in the Pyrenees mountain range was conducted using available observational information from September 2010 to August 2014. Cold‐air pools occur during almost 60% of the nights, mainly during winter. Cold pools develop even under significant synoptic pressure gradients. Additionally, drainage currents transporting air down‐valley occur most of the nights. In particular one representative cold‐air pool event has been analysed in detail by a high‐resolution mesoscale simulation, combined with an analysis of data from both ground‐based stations and satellites. Radiative processes dominate the evolution of cold‐air pools, together with turbulence in the lowest layers, while drainage flows down from the high mountains mainly through the tributary valleys and from the valley sidewall slopes play a key role in bringing air to the pool. Cold pool formation begins approximately 1 hr after sunset, and it extends across most of the valley bottom, with a very strong thermal inversion close to the surface that has a depth of up to 100 m in the lowest parts of the valley. Wind veers down‐valley along the main axis 2–3 hr after sunset and the wind direction is approximately maintained until after sunrise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.