There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size‐selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears—and therefore fisheries‐induced evolution (FIE)—but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species’ distributions and responses to environmental change.
Group living is widespread among animals and has a range of positive effects on individual foraging and predator avoidance. For fishes, capture by humans constitutes a major source of mortality, and the ecological effects of group living could carry‐over to harvest scenarios if fish are more likely to interact with fishing gears when in social groups. Furthermore, individual metabolic rate can affect both foraging requirements and social behaviors, and could, therefore, have an additional influence on which fish are most vulnerable to capture by fishing. Here, we studied whether social environment (i.e., social group size) and metabolic rate exert independent or interactive effects on the vulnerability of wild zebrafish (Danio rerio) to capture by a baited passive trap gear. Using video analysis, we observed the tendency for individual fish to enter a deployed trap when in different shoal sizes. Fish in larger groups were more vulnerable to capture than fish tested individually or at smaller group sizes. Specifically, focal fish in larger groups entered traps sooner, spent more total time within the trap, and were more likely to re‐enter the trap after an escape. Contrary to expectations, there was evidence that fish with a higher SMR took longer to enter traps, possibly due to a reduced tendency to follow groupmates or attraction to conspecifics already within the trap. Overall, however, social influences appeared to largely overwhelm any link between vulnerability and metabolic rate. The results suggest that group behavior, which in a natural predation setting is beneficial for avoiding predators, could be maladaptive under a trap harvest scenario and be an important mediator of which traits are under harvest associated selection.
Morphological variation is the outward manifestation of development and provides fodder for adaptive evolution. Because of this contingency, evolution is often thought to be biased by developmental processes and functional interactions among structures, which are statistically detectable through forms of covariance among traits. This can take the form of substructures of integrated traits, termed modules, which together comprise patterns of variational modularity. While modularity is essential to an understanding of evolutionary potential, biologists currently have little understanding of its genetic basis and its temporal dynamics over generations. To address these open questions, we compared patterns of craniofacial modularity among laboratory strains, defined mutant lines and a wild population of zebrafish (). Our findings suggest that relatively simple genetic changes can have profound effects on covariance, without greatly affecting craniofacial shape. Moreover, we show that instead of completely deconstructing the covariance structure among sets of traits, mutations cause shifts among seemingly latent patterns of modularity suggesting that the skull may be predisposed towards a limited number of phenotypes. This new insight may serve to greatly increase the evolvability of a population by providing a range of 'preset' patterns of modularity that can appear readily and allow for rapid evolution.
In aquatic ecology, studies have commonly employed a tagging technique known as visible implant elastomer (VIE). This method has not been widely adopted by the zebrafish research community and also lacks refinement with regard to animal welfare. The current paper introduces a new VIE tagging protocol, with the aim of improving existing tagging techniques by placing particular emphasis on the Three Rs. To improve animal welfare and fish survival, we added the use of an analgesic compound (lidocaine) through the marking procedure, followed by after-treatment with antiseptics (melaleuca, aloe vera, and PVP-I as active ingredients) to improve tissue regeneration and healing. The newly improved protocol has been quantitatively evaluated on different populations and age groups of zebrafish. This study will be useful to the scientific zebrafish community and to the wider field including biologist and aquarists, especially in consideration of animal welfare, where tagging techniques are considered as a potential noxious stimulus for fish.
Commercial fishery harvest is a powerful evolutionary agent, but we know little about whether environmental stressors affect harvest-associated selection. We test how parasite infection relates to trapping vulnerability through selective processes underlying capture. We used fish naturally infected with parasites, including trematodes causing black spots under fish skin. We first assessed how individual parasite density related to standard metabolic rate (SMR), maximum metabolic rate (MMR) and absolute aerobic scope (AAS)—then used laboratory fishing simulations to test how capture vulnerability was related to parasite density. We further explored group-trapping dynamics using experimental shoals containing varying proportions of infected fish (groups of six with either 0, 2, 4 or 6 infected individuals). At the individual level, we found a positive relationship between parasite presence and SMR, but not MMR or AAS. While we saw no relationship between individual metabolic capacity and vulnerability to trapping, we found the length of time fish spent in traps increased with increasing parasite density, a predictor of trapping-related capture probability. At the group level, the number of infected individuals in a shoal did not affect overall group trapping vulnerability. Our results suggest that parasite infection has some capacity to shift individual vulnerability patterns in fisheries, and potentially influence the evolutionary outcomes of fisheries-induced evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.