In this article, we present mutable locks, a synchronization construct with the same semantic of traditional locks (such as spin locks or sleep locks), but with a self-tuned optimized trade-off between responsiveness and CPU-time usage during threads' wait phases. Mutable locks tackle the need for efficient synchronization supports in the era of multicore machines, where the run-time performance should be optimized while reducing resource usage. This goal should be achieved with no intervention by the programmers. Our proposal is intended for exploitation in generic concurrent applications, where scarce or no knowledge is available about the underlying software/hardware stack and the workload. This is an adverse scenario for static choices between spinning and sleeping, which is tackled by our mutable locks thanks to their hybrid waiting phase and self-tuning capabilities.
In this article we present Mutable Locks, a synchronization construct with the same execution semantic of traditional locks (such as spin locks or sleep locks), but with a self-tuned optimized trade off between responsiveness-in the access to a just released critical section-and CPU-time usage during threads' wait phases. It tackles the need for modern synchronization supports, in the era of multi-core machines, whose runtime behavior should be optimized along multiple dimensions (performance vs resource consumption) with no intervention by the application programmer. Our proposal is intended for exploitation in generic concurrent applications where scarce or none knowledge is available about the underlying software/hardware stack and the actual workload, an adverse scenario for static choices between spinning and sleeping faced by mutable locks just thanks to their hybrid waiting phases and self-tuning capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.