Nowadays, progressive improvements of engine performance must be performed to reduce fuel consumption, which directly affects the amount of CO2 released in the atmosphere. For this purpose, considering modern technologies in the automotive scenario, Gasoline Compression Ignition (GCI) combustion might represent one promising solution, since it experiences high thermal efficiency of Compression Ignited (CI) engines and pollutant emission mitigation. This paper shows the first step of a project aimed at reproducing the combustion behavior of a Diesel engine running with GCI combustion by means of CFD simulations. In particular, this work presents a methodology used to reconstruct the mixing process inside the cylinder before the combustion event, since those engines are dramatically sensitive to the global and local mixture quality. Firstly, a reverse-engineering procedure aimed at generating the CAD model of the engine was performed. Afterwards, the discharge coefficients of the intake and exhaust valves through specifically designed 3D CFD simulations were determined, which was necessary due to the customized intake/exhaust line. Eventually, to reasonably reconstruct the in-cylinder state, the Rate of Heat Release (RoHR) curve, calculated from the analysis of the in-cylinder pressure signal running the engine in GCI mode, was imposed in GT-Power by means of a combination of Wiebe functions with the purpose of generating representative trends of pressure, temperature, and mass flow to properly define the domains of the CFD model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.