SUMMARYInterest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni 2+ -inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni 2+ because of the introduction of an EDTA buffer system in the revised medium.Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro-and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology.
BackgroundCOG0523 proteins are, like the nickel chaperones of the UreG family, part of the G3E family of GTPases linking them to metallocenter biosynthesis. Even though the first COG0523-encoding gene, cobW, was identified almost 20 years ago, little is known concerning the function of other members belonging to this ubiquitous family.ResultsBased on a combination of comparative genomics, literature and phylogenetic analyses and experimental validations, the COG0523 family can be separated into at least fifteen subgroups. The CobW subgroup involved in cobalamin synthesis represents only one small sub-fraction of the family. Another, larger subgroup, is suggested to play a predominant role in the response to zinc limitation based on the presence of the corresponding COG0523-encoding genes downstream from putative Zur binding sites in many bacterial genomes. Zur binding sites in these genomes are also associated with candidate zinc-independent paralogs of zinc-dependent enzymes. Finally, the potential role of COG0523 in zinc homeostasis is not limited to Bacteria. We have predicted a link between COG0523 and regulation by zinc in Archaea and show that two COG0523 genes are induced upon zinc depletion in a eukaryotic reference organism, Chlamydomonas reinhardtii.ConclusionThis work lays the foundation for the pursuit by experimental methods of the specific role of COG0523 members in metal trafficking. Based on phylogeny and comparative genomics, both the metal specificity and the protein target(s) might vary from one COG0523 subgroup to another. Additionally, Zur-dependent expression of COG0523 and putative paralogs of zinc-dependent proteins may represent a mechanism for hierarchal zinc distribution and zinc sparing in the face of inadequate zinc nutrition.
Arsenate [As(V)]-respiring bacteria affect the speciation and mobilization of arsenic in the environment. This can lead to arsenic contamination of drinking water supplies and deleterious consequences for human health. Using molecular genetics, we show that the functional gene for As(V) respiration, arrA, is highly conserved; that it is required for As(V) reduction to arsenite when arsenic is sorbed onto iron minerals; and that it can be used to identify the presence and activity of As(V)-respiring bacteria in arsenic-contaminated iron-rich sediments. The expression of arrA thus can be used to monitor sites in which As(V)-respiring bacteria may be controlling arsenic geochemistry.
Copper response regulator 1 (CRR1), an SBP-domain transcription factor, is a global regulator of nutritional copper signaling in Chlamydomonas reinhardtii and activates genes necessary during periods of copper deficiency. We localized Chlamydomonas CRR1 to the nucleus in mustard (Sinapis alba) seedlings, a location consistent with its function as a transcription factor. The Zn binding SBP domain of CRR1 binds copper ions in vitro. Cu(I) can replace Zn(II), but the Cu(II) form is unstable. The DNA binding activity is inhibited in vitro by Cu(II) or Hg(II) ions, which also prevent activation of transcription in vivo, but not by Co(II) or Ni(II), which have no effect in vivo. Copper inhibition of DNA binding is reduced by mutation of a conserved His residue. These results implicate the SBP domain in copper sensing. Deletion of a C-terminal metallothionein-like Cys-rich domain impacted neither nutritional copper signaling nor the effect of mercuric supplementation, but rendered CRR1 insensitive to hypoxia and to nickel supplementation, which normally activate the copper deficiency regulon in wild-type cells. Strains carrying the crr1-DCys allele upregulate ZRT genes and hyperaccumulate Zn(II), suggesting that the effect of nickel ions may be revealing a role for the C-terminal domain of CRR1 in zinc homeostasis in Chlamydomonas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.