A subgroup of patients with drug-resistant epilepsy have seizure clusters, which are a part of the continuum of seizure emergencies that includes prolonged episodes and status epilepticus. When the patient or caregiver can identify the beginning of a cluster, the condition is amenable to certain treatments, an approach known as rescue therapy. Intravenous drug administration offers the fastest onset of action, but this route is usually not an option because most seizure clusters occur outside of a medical facility. Alternate routes of administration have been used or are proposed including rectal, buccal, intrapulmonary, subcutaneous, intramuscular, and intranasal. The objective of this narrative review is to describe the (1) anatomical, physiologic, and drug physicochemical properties that need to be considered when developing therapies for seizure emergencies and (2) products currently in development. New therapies must consider parameters of Fick's law such as absorptive surface area, blood flow, membrane thickness, and lipid solubility, because these factors affect both rate and extend of absorption. For example, the lung has a 50 000-fold greater absorptive surface area than that associated with a subcutaneous injection. Lipid solubility is a physicochemical property that influences the absorption rate of small molecule drugs. Among drugs currently used or under development for rescue therapy, allopregnanolone has the greatest lipid solubility at physiologic pH, followed by propofol, midazolam, diazepam, lorazepam, alprazolam, and brivaracetam. However, greater lipid solubility correlates with lower water solubility, complicating formulation of rescue therapies. One approach to overcoming poor aqueous solubility involves the use of a water-soluble prodrug coadministered with a converting enzyme, which is being explored for the intranasal delivery of diazepam. With advances in seizure prediction technology and the development of drug delivery systems that provide rapid onset of effect, rescue therapies may prevent the occurrence of seizures, thus greatly improving the management of epilepsy.
Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the U.S. FDA approved intravenous RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for nonhospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an intravenous administration of RDV at 10 mg/kg, an about 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed after inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with intravenous RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning about 8 hours after infection. Moreover, the efficacy of inhaled RDV was similar to that of intravenous RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.
Intranasal administration is an attractive route for systemic delivery of small, lipophilic drugs because they are rapidly absorbed through the nasal mucosa into systemic circulation. However, the low solubility of lipophilic drugs often precludes aqueous nasal spray formulations. A unique approach to circumvent solubility issues involves coadministration of a hydrophilic prodrug with an exogenous converting enzyme. This strategy not only addresses poor solubility but also leads to an increase in the chemical activity gradient driving drug absorption. Herein, we report plasma and brain concentrations in rats following coadministration of a hydrophilic diazepam prodrug, avizafone, with the converting enzyme human aminopeptidase B. Single doses of avizafone equivalent to diazepam at 0.500, 1.00, and 1.50 mg/kg were administered intranasally, resulting in 77.8% 6 6.0%, 112% 6 10%, and 114% 6 7% bioavailability; maximum plasma concentrations 71.5 6 9.3, 388 6 31, and 355 6 187 ng/ml; and times to peak plasma concentration 5, 8, and 5 minutes for each dose level, respectively. Both diazepam and a transient intermediate were absorbed. Enzyme kinetics incorporated into a physiologically based pharmacokinetic model enabled estimation of the first-order absorption rate constants: 0.0689 6 0.0080 minutes 21 for diazepam and 0.122 6 0.022 minutes 21 for the intermediate. Our results demonstrate that diazepam, which is practically insoluble, can be delivered intranasally with rapid and complete absorption by coadministering avizafone with aminopeptidase B. Furthermore, even faster rates of absorption might be attained simply by increasing the enzyme concentration, potentially supplanting intravenous diazepam or lorazepam or intramuscular midazolam in the treatment of seizure emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.