Oocyte activation is a calcium (Ca 2+ )-dependent process that has been investigated in depth, in particular, regarding its impact on assisted reproduction technology (ART -linked physiological events involved in mediating the egg-to-embryo transition. Furthermore, mechanisms of AOA and the limitations and benefits associated with the application of different activation agents are discussed.
Inconsistent fertilisation and pregnancy rates have been reported by different laboratories after application of ionomycin as a clinical method of assisted oocyte activation (AOA) to overcome fertilisation failure. Using both mouse and human oocytes, in the present study we investigated the effects of ionomycin and Ca2+ concentrations on the pattern of Ca2+ release and embryonic developmental potential. In the mouse, application of 5μM ionomycin in potassium simplex optimisation medium (KSOM) or 10µM ionomycin in Ca2+-free KSOM significantly reduced the Ca2+ flux and resulted in failure of blastocyst formation compared with 10μM ionomycin in KSOM. Increasing the Ca2+ concentration up to three- or sixfold did not benefit mouse embryonic developmental potential. Similarly, 10μM ionomycin-induced rise in Ca2+ in human oocytes increased with increasing total calcium concentrations in the commercial medium. Remarkably, we observed significantly reduced mouse embryo development when performing AOA over a period of 10min in Quinn's AdvantageTM Fertilisation medium (Cooper Surgical) and IVFTM medium (Vitrolife) compared with Sydney IVF COOK cleavage medium (Cook Ireland), using the same sequential culture system from the post-activation stage to blastocyst formation stage in different AOA groups. In conclusion, concentrations of both ionomycin and Ca2+ in culture media used during AOA can have significant effects on Ca2+ release and further embryonic developmental potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.