The intramolecular Diels‐Alder (IMDA) reactions of N‐allyl‐furfurylamine (1a) and N‐trityl‐allyl‐furfurylamine (1b), were studied within the molecular electron density theory (MEDT) using density functional theory method [B3LYP/6‐31G(d)]. In spite of the high activation enthalpies, the low unfavourable activation entropies associated to these intramolecular processes permit these IMDA reactions to take place. The IMDA reaction of 1a is thermodynamically unfavourable. The presence of the bulky −CPh3 group in the amine nitrogen atom that destabilises the extended conformation of 1b turns the process into an exergonic one. This behaviour does not only affect the thermochemistry of the reaction, but also the kinetic parameters, thus accelerating the reaction. Electron localisation function topological analysis of the C−C single bond formation along the IMDA reaction of 1a shows a bonding pattern similar to non‐polar intermolecular Diels‐Alder reactions. The present MEDT study explains the experimental results; although the steric buttress is able to change the direction of these reversible IMDA reactions, this change is only possible due to the aromatic nature of the furanyl diene system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.