An efficient Cu-catalyzed one-pot approach for the synthesis of unsymmetrical diaryl thioethers using potassium ethyl xanthogenate as a thiol surrogate is developed. This new protocol avoids usage of intricate thiols and makes use of its easily available xanthate as a precursor, and thiol will be generated in situ to prepare the diaryl thioethers through a Cu-catalyzed double arylation. This strategy was further successfully utilized for the synthesis of symmetrical diaryl thioethers, aryl alkyl thioethers, and benzothiazoles.
Novel 2-arylthiazolidin-4-one derivatives (8a-q and 11) have been synthesized in good-to-excellent yields (70-96%) by one-pot three-component condensation-cyclization reaction of aromatic or aliphatic primary amines, aromatic aldehydes, and thioglycolic acid in polypropylene glycol at 110°C temperature. The in vitro antimicrobial activity of the synthesized 2-arylthiazolidin-4-ones was investigated against a panel of six pathogenic fungal strains, a Gram-positive and three Gram-negative bacteria. Results revealed that the compounds (8a-d) bearing 3-(4-(1H-imidazolylmethyl)phenyl)-substituent displayed significant antibacterial efficacy specifically against Klebsiella pneumoniae (minimum inhibitory concentration 12.5 μg/mL). In addition, some of the synthesized compounds have also shown antimicotic activity against Sporothrix schenckii, Trichophyton mentagrophytes, and Aspergillus fumigatus at the concentration of 50 μg/mL.Graphical abstractA series of novel 2-arylthiazolidin-4-one analogues was prepared and assessed for their in vitro antimicrobial efficacy. Some of the synthesized compounds displayed significant antibacterial efficacy against Klebsiella pneumoniae and selective antimycotic activity against Trichophyton mentagrophytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.