Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.
Granules with release-sustaining properties were developed by twin screw hot melt granulation (HMG) using a combination of stearic acid (SA) and high molecular weight polyethylene oxide (PEO) as matrix for a highly water soluble model drug, metoprolol tartrate (MPT). Earlier studies demonstrated that mixing molten SA and PEO resulted in hydrogen bond formation between hydroxyl groups of fatty acid molecules and ether groups in PEO chains. These molecular interactions might be beneficial in order to elevate the sustained release effect of drugs from a SA/PEO matrix. This study aims to investigate the continuous twin screw melt granulation technique to study the impact of a SA/PEO matrix on the dissolution rate of a highly water soluble drug (MPT). Decreasing the SA/PEO ratio improved the release-sustaining properties of the matrix. The solid state of the granules was characterized using differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and near infrared chemical imaging (NIR-CI) in order to understand the dissolution behavior. The results revealed a preferential interaction of the MPT molecules with stearic acid impeding the PEO to form hydrogen bonds with the stearic acid chains. However, this allowed the PEO chains to recrystallize inside the stearic acid matrix after granulation, hence, elevating the release-sustaining characteristics of the formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.