Predicting functionality of noncoding variation is one of the major challenges in modern genetics. We employed massively parallel reporter assays to screen 5,706 variants from genome-wide association studies for both Alzheimers disease (AD) and Progressive Supranuclear Palsy (PSP). We identified 320 functional regulatory polymorphisms (SigVars) comprising 27 of 34 unique tested loci, including multiple independent signals across the complex 17q21.31 region. We identify novel risk genes including PLEKHM1 in PSP and APOC1 in AD, and perform gene-editing to validate four distinct causal loci, confirming complement 4 (C4A) as a novel genetic risk factor for AD. Moreover, functional variants preferentially disrupt transcription factor binding sites that converge on enhancers with differential cell-type specific activity in PSP and AD, implicating a neuronal SP1-driven regulatory network in PSP pathogenesis. These analyses support a novel mechanism underlying noncoding genetic risk, whereby common genetic variants drive disease risk via their aggregate activity on specific transcriptional programs.
Background: Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder. Large genetically informative cohorts of individuals with ASD have led to the identification of three common genome-wide significant (GWS) risk loci to date. However, many more common genetic variants are expected to contribute to ASD risk given the high heritability. Here, we performed a genome-wide association study (GWAS) using the Simons Foundation Powering Autism Research for Knowledge (SPARK) dataset to identify additional common genetic risk factors and molecular mechanisms underlying risk for ASD. Methods: We performed an association study on 6,222 case-pseudocontrol pairs from SPARK and meta-analyzed with a previous GWAS. We integrated gene regulatory annotations to map non-coding risk variants to their regulated genes. Further, we performed a massively parallel reporter assay (MPRA) to identify causal variant(s) within a novel risk locus. Results: We identified one novel GWS locus from the SPARK GWAS. The meta-analysis identified four significant loci, including an additional novel locus. We observed significant enrichment of ASD heritability within regulatory regions of the developing cortex, indicating that disruption of gene regulation during neurodevelopment is critical for ASD risk. The MPRA identified one variant at the novel locus with strong impacts on gene regulation (rs7001340), and expression quantitative trait loci data demonstrated an association between the risk allele and decreased expression of DDHD2 (DDHD domain containing 2) in both adult and pre-natal brains. Conclusions: By integrating genetic association data with multi-omic gene regulatory annotations and experimental validation, we fine-mapped a causal risk variant and demonstrated that DDHD2 is a novel gene associated with ASD risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.