Caspase-9 is involved in the intrinsic apoptotic pathway and suggested to play a role as a tumor suppressor. Little is known about the mechanisms governing caspase-9 expression, but post-transcriptional pre-mRNA processing generates 2 splice variants from the caspase-9 gene, pro-apoptotic caspase-9a and anti-apoptotic caspase-9b. Here we demonstrate that the ratio of caspase-9 splice variants is dysregulated in non-small cell lung cancer (NSCLC) tumors. Mechanistic analysis revealed that an exonic splicing silencer (ESS) regulated caspase-9 pre-mRNA processing in NSCLC cells. Heterogeneous nuclear ribonucleoprotein L (hnRNP L) interacted with this ESS, and downregulation of hnRNP L expression induced an increase in the caspase-9a/9b ratio. Although expression of hnRNP L lowered the caspase-9a/9b ratio in NSCLC cells, expression of hnRNP L produced the opposite effect in non-transformed cells, suggesting a post-translational modification specific for NSCLC cells. Indeed, Ser 52 was identified as a critical modification regulating the caspase-9a/9b ratio. Importantly, in a mouse xenograft model, downregulation of hnRNP L in NSCLC cells induced a complete loss of tumorigenic capacity that was due to the changes in caspase-9 pre-mRNA processing. This study therefore identifies a cancer-specific mechanism of hnRNP L phosphorylation and subsequent lowering of the caspase-9a/9b ratio, which is required for the tumorigenic capacity of NSCLC cells.
The bone marrow aspirate and biopsy is an important medical procedure for the diagnosis of hematologic malignancies and other diseases, and for the follow-up evaluation of patients undergoing chemotherapy, bone marrow transplantation, and other forms of medical therapy. During the procedure, liquid bone marrow is aspirated from the posterior iliac crest or sternum with a special needle, smeared on glass microscope slides by one of several techniques, and stained by the Wright-Giemsa or other techniques for micro-scopic examination. The bone marrow core biopsy is obtained from the posterior iliac crest with a Jamshidi or similar needle and processed in the same manner as other surgical specimens. Flow cytometric examination, cytochemical stains, cytogenetic and molecular analysis, and other diagnostic procedures can be performed on bone marrow aspirate material, while sections prepared from the bone marrow biopsy can be stained by the immunoperoxidase or other techniques. The bone marrow procedure can be performed with a minimum of discomfort to the patient if adequate local anesthesia is utilized. Pain, bleeding, and infection are rare complications of the bone marrow procedure performed at the posterior iliac crest, while death from cardiac tamponade has rarely occurred from the sternal bone marrow aspiration. The recent development of bone marrow biopsy needles with specially sharpened cutting edges and core-securing devices has reduced the discomfort of the procedure and improved the quality of the specimens obtained.
Genes related to fibrosis, extracellular matrix deposition, and immune response were found up-regulated in CAN. Markers resulting from the microarray analysis were differentially expressed in Ur samples of the CAN patients and in concordance with the microarray profiles.
Objectives We sought to determine if gadolinium (Gd)-containing lipid-based nanoparticles (NPs) targeting the macrophage scavenger receptor-B (CD36) improve magnetic resonance (MR) detection and characterization of human atherosclerosis. Background The ability to detect atherosclerosis with MR imaging using gadolinium Gd-containing lipid-based NPs targeting macrophages may enable early detection of high-risk lesions prior to an atherothrombotic event. Gd-containing lipid-based NPs targeting macrophages improved MR detection of murine atherosclerosis. Methods Gd-containing NPs, anti-CD36 NPs and Fc-NPs were created. Macrophages were incubated with fluorescent targeted and non-targeted NPs to determine uptake via confocal microscopy and inductively coupled plasma mass spectroscopy (ICP-MS) quatified Gd uptake. Human aortic specimens were harvested at autopsy. Using a 1.5 T scanner, T1, T2, and PDW 3-dimensional scans were performed along with post-contrast scans after 24 h incubation. T1 and cluster analysis were performed and compared with immunohistopathology. Results The NPs had a mean diameter of 125 nm, 14,900 Gd-ions, and relaxivity was 37 mM-1s-1 at 1.5T and 37°C. Confocal microscopy and ICP-MS demonstrated significant in vitro macrophage uptake of targeted NPs while non-targeted NPs had minimal uptake. On T1 imaging, targeted NPs increased CNR by 52.5% which was significantly great than Fc-NPs (CNR increased 17.2%) and non-targeted NPs (CNR increased 18.7%) (p=0.001). Confocal fluorescent microscopy showed that NPs target resident macrophages while the untargeted NPs and Fc-NPs are found diffusely throughout the plaque. Targeted NPs had a greater signal intensity increase in the fibrous cap compared with (p<0.001) while non-targeted NPs and Fc-NPs had a greater increase in the lipid core (p<0.01). Conclusion Macrophage-specific (CD36) NPs bind human macrophages and improved MR detection and characterization of human aortic atherosclerosis. Thus, macrophage-specific NPs could help identify high-risk human plaque prior to the development of an atherothrombotic event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.