Intracoronary cell therapy following percutaneous coronary intervention for AMI appears to provide statistically and clinically relevant benefits on cardiac function and remodeling. These data confirm the beneficial impact of this novel therapy and support further multicenter randomized trials targeted to address the impact of intracoronary cell therapy on overall and event-free long-term survival.
Treatment of acute myocardial infarction (AMI) has improved significantly in recent years, but many patients have adverse left ventricular (LV) remodeling, a maladaptive change associated with progressive heart failure. Although this change is usually associated with large infarcts, some patients with relatively small infarcts have adverse remodeling, whereas other patients with larger infarcts (who survive the first several days after AMI) do not. This paper reviews the relevant data supporting the hypothesis that individual differences in the intensity of the post-AMI inflammatory response, involving 1 or more inflammatory-modulating pathways, may contribute to adverse LV remodeling. It concludes by outlining how individual variations in the inflammatory response could provide important novel therapeutic targets and strategies.
We investigated the ability of targeted immunomicelles to detect and assess macrophages in atherosclerotic plaque using MRI in vivo. There is a large clinical need for a noninvasive tool to assess atherosclerosis from a molecular and cellular standpoint. Macrophages play a central role in atherosclerosis and are associated with plaques vulnerable to rupture. Therefore, macrophage scavenger receptor (MSR) was chosen as a target for molecular MRI. MSR-targeted immunomicelles, micelles, and gadolinium-diethyltriaminepentaacetic acid (DTPA) were tested in ApoE؊/؊ and WT mice by using in vivo MRI. Confocal laser-scanning microscopy colocalization, macrophage immunostaining and MRI correlation, competitive inhibition, and various other analyses were performed. In vivo MRI revealed that at 24 h postinjection, immunomicelles provided a 79% increase in signal intensity of atherosclerotic aortas in ApoE؊/؊ mice compared with only 34% using untargeted micelles and no enhancement using gadolinium-DTPA. Confocal laser-scanning microscopy revealed colocalization between fluorescent immunomicelles and macrophages in plaques. There was a strong correlation between macrophage content in atherosclerotic plaques and the matched in vivo MRI results as measured by the percent normalized enhancement ratio. Monoclonal antibodies to MSR were able to significantly hinder immunomicelles from providing contrast enhancement of atherosclerotic vessels in vivo. Immunomicelles provided excellent validated in vivo enhancement of atherosclerotic plaques. The enhancement seen is related to the macrophage content of the atherosclerotic vessel areas imaged. Immunomicelles may aid in the detection of high macrophage content associated with plaques vulnerable to rupture. macrophage scavenger receptor ͉ molecular imaging ͉ vulnerable plaque ͉ immunomicelles ͉ gadolinium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.