Fatigue due to physical exertion is a ubiquitous phenomenon in everyday life and especially common in a range of neurological diseases. While the effect of fatigue on limiting skill execution are well known, its influence on learning new skills is unclear. This is of particular interest as it is common practice to train athletes, musicians or perform rehabilitation exercises up to and beyond a point of fatigue. In a series of experiments, we describe how muscle fatigue, defined as degradation of maximum force after exertion, impairs motor-skill learning beyond its effects on task execution. The negative effects on learning are evidenced by impaired task acquisition on subsequent practice days even in the absence of fatigue. Further, we found that this effect is in part mediated centrally and can be alleviated by altering motor cortex function. Thus, the common practice of training while, or beyond, fatigue levels should be carefully reconsidered, since this affects overall long-term skill learning.
Object Meningiomas occur in various intracranial locations. Each location is associated with a unique set of surgical nuances and risk profiles. The incidence and risk factors that predispose patients to certain deficits based on tumor locations are unclear. This study aimed to determine which preoperative factors increase the risk of patients having new deficits after surgery based on tumor location for patients undergoing intracranial meningioma surgery.
Methods Adult patients who underwent primary, nonbiopsy resection of a meningioma at a tertiary care institution between 2007 and 2015 were retrospectively reviewed. Stepwise multivariate logistic regression analyses were used to identify associations with postoperative deficits based on tumor location.
Results Postoperatively, from the 761 included patients, there were 39 motor deficits (5.1%), 23 vision deficits (3.0%), 19 language deficits (2.5%), 27 seizures (3.5%), and 26 cognitive deficits (3.4%). The factors independently associated with any postoperative deficits were preoperative radiation (hazard ratio [HR] [95% confidence interval, CI] 3.000 [1.346–6.338], p = 0.008), cerebellopontine angle tumors (HR [95% CI] 2.126 [1.094–3.947], p = 0.03), Simpson grade 4 resections (HR [95% CI] 2.000 [1.271–3.127], p = 0.003), preoperative motor deficits (HR [95% CI] 1.738 [1.005–2.923], p = 0.048), preoperative cognitive deficits (HR [95% CI] 2.033 [1.144–3.504], p = 0.02), and perioperative pulmonary embolisms (HR [95% CI] 11.741 [2.803–59.314], p = 0.0009).
Conclusion Consideration of the factors associated with postoperative deficits in this study may help guide treatment strategies for patients with meningiomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.