Facial emotion recognition is an inherently complex problem due to individual diversity in facial features and racial and cultural differences. Moreover, facial expressions typically reflect the mixture of people’s emotional statuses, which can be expressed using compound emotions. Compound facial emotion recognition makes the problem even more difficult because the discrimination between dominant and complementary emotions is usually weak. We have created a database that includes 31,250 facial images with different emotions of 115 subjects whose gender distribution is almost uniform to address compound emotion recognition. In addition, we have organized a competition based on the proposed dataset, held at FG workshop 2020. This paper analyzes the winner’s approach—a two-stage recognition method (1st stage, coarse recognition; 2nd stage, fine recognition), which enhances the classification of symmetrical emotion labels.
Facial expression recognition using deep neural networks has become very popular due to their successful performances. However, the datasets used during the development and testing of these methods lack a balanced distribution of races among the sample images. This leaves a possibility of the methods being biased toward certain races. Therefore, a concern about fairness arises, and the lack of research aimed at investigating racial bias only increases the concern. On the other hand, such bias in the method would decrease the real-world performance due to the wrong generalization. For these reasons, in this study, we investigated the racial bias within popular state-of-the-art facial expression recognition methods such as Deep Emotion, Self-Cure Network, ResNet50, InceptionV3, and DenseNet121. We compiled an elaborated dataset with images of different races, cross-checked the bias for methods trained, and tested on images of people of other races. We observed that the methods are inclined towards the races included in the training data. Moreover, an increase in the performance increases the bias as well if the training dataset is imbalanced. Some methods can make up for the bias if enough variance is provided in the training set. However, this does not mitigate the bias completely. Our findings suggest that an unbiased performance can be obtained by adding the missing races into the training data equally. KeywordsFacial expression recognition (FER) • Deep neural networks • Reaction emotion • LSTM Abdallah Hussein Sham and Kadir Aktas are both equally led this work.Our thanks to Pexels API for granting us the rights for the data collection of the database.
Machine learning can encode and amplify negative biases or stereotypes already present in humans, resulting in high-profile cases. There can be multiple sources encoding the negative bias in these algorithms, like errors from human labelling, inaccurate representation of different population groups in training datasets, and chosen model structures and optimization methods. Our paper proposes a novel approach to speech processing that can resolve the gender bias problem by eliminating the gender parameter. Therefore, we devised a system that transforms the input sound (speech of a person) into a neutralized voice to the point where the gender of the speaker becomes indistinguishable by both humans and AI. Wav2Vec based network has been utilised to conduct speech gender recognition to validate the main claim of this research work, which is the neutralisation of gender from the speech. Such a system can be used as a batch pre-processing layer for training models, thus making associated gender bias irrelevant. Further, such a system can also find its application where speaker gender bias by humans is also prominent, as the listener will not be able to judge the gender from speech.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.