This paper presents for the first time a literature survey toward the design of compliant homokinetic couplings. The rigid-linkage-based constant velocity universal joints (CV joints) available from literature were studied, classified, their graph representations were presented, and their mechanical efficiencies compared. Similarly, literature is reviewed for different kinds of compliant joints suitable to replace instead of rigid-body joints in rigid-body CV joints. The compliant joints are compared based on analytical data. To provide a common basis for comparison, consistent flexure scales and material selection are used. It was found that existing compliant universal joints are nonconstant in velocity and designed based on rigid-body Hooke's universal joint. It was also discovered that no compliant equivalent exists for cylindrical, planar, spherical fork, and spherical parallelogram quadrilateral joints. We have demonstrated these compliant joints can be designed by combining existing compliant joints. The universal joints found in this survey are rigid-body non-CV joints, rigid-body CV joints, or compliant non-CV joints. A compliant homokinetic coupling is expected to combine the advantages of compliant mechanisms and constant velocity couplings for many applications where maintenance or cleanliness is important, for instance in medical devices and precision instruments.
Many applications require a compliant mechanism to transmit rotation from one direct to another direct with constant velocity. This paper presents a literature survey towards the design of compliant constant velocity universal joints. The traditional constant velocity universal joints available from the literature were studied, classified and their mechanical efficiencies were compared. Also the graph representation of them was studied. In the same manner, literature review for different kind of compliant joints suitable for the Rigid-Body-Replacement of constant velocity universal joints was also performed. For the first time a comparison with analytical data of compliant joints was performed. All of compliant universal joints are non-constant velocity and designed based on rigid Hooke’s universal joint. Also we show there are no equivalent compliant joints for some rigid-body joints such as cylindrical joint, planar joint, spherical fork joint and spherical parallelogram quadrilateral joint. However, we may achieve them by combining numbers of available compliant joints. The universal joints found are non-compliant non-constant velocity universal joint, non-compliant constant velocity universal joint or compliant non-constant velocity universal joint. A compliant constant velocity universal joint has a great horizon for developments, for instance in medical or rehabilitation devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.