The distribution of mass density through the thickness of Medium Density Fiberboard (MDF) panels is known to be non-uniform. A few studies have previously investigated the influence of this non-uniform through-thickness density distribution on the thermal behavior of MDF panels in small-scale tests. This study assesses the significance of this material property on flame spread simulations in a medium-scale setup , namely that of Single Burning Item (SBI) corner fire tests. Simulations are performed using FireFOAM 2.2.x, considering both uniform and non-uniform MDF material density profiles, using model-effective material properties determined from bench-scale pyrolysis tests conducted in a Fire Propagation Apparatus (FPA). The heat transfer from the gas phase is modeled by means of empirical expressions with adjusted parameters. The simulations are assessed against the results of several SBI experiments with MDF panels and a test with Calcium Sil
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.