Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force-displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method. Experimental part of the work contains testing of the mechanical properties of S275J0 steel by the static tensile test and Impact test on instrumented Charpy pendulum.
A thermographic technique for detecting disbonds and delaminations in concrete beams reinforced with bonded sheets of unidirectional carbon fiber reinforced plastic is described. Concrete slab test specimens are fabricated with seeded flaws of various thickness and depth from the surface. The specimens are briefly heated with a projector heat source and infrared images are captured. Digital image processing techniques are applied in order to improve image quality. Flaws are identified. Advantages and limitations ofthis method are discussed.
Tensile and impact properties of API 5L X80 steel were investigated and compared in order to evaluate their relation. Yield and maximum forces under dynamic impact testing were obtained from force-displacement curves. Dynamic yield strength was estimated using the von Mises yield criterion. A different approach was taken in order to estimate the dynamic tensile strength; the instrumented RKP 450 Zwick/Roell machine was used for this specific purpose. From the 10-mm-thick steel plate, Charpy V notch (CVN) samples were cut off in longitudinal orientation considering the rolling direction. For this research, CVN specimens were machined according to the ISO 148:2016 standard. Tensile specimens were machined according to the ISO 6892-1:2016 standard. It was found that the results between the tensile and impact properties were very close and within 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.