Previously we described the extent of sprouting that axons of the rat substantia nigra pars compacta (SNpc) undergo to grow new synapses and re-innervate the dorsal striatum 16 weeks after partial lesions. Here we provide insights into the timing of events related to the re-innervation of the dorsal striatum by regenerating dopaminergic nigrostriatal axons over a 104-week period after partial SNpc lesioning. Density of dopamine transporter and tyrosine hydroxylase immunoreactive axonal varicosities (terminals) decreased up to 80% 4 weeks after lesioning but returned to normal by 16 weeks, unless SNpc lesions were greater than 75%. Neuronal tracer injections into the SNpc revealed a 119% increase in axon fibres (4 mm rostral to the SNpc) along the medial forebrain bundle 4 weeks after lesioning. SNpc cells underwent phenotypic changes. Four weeks after lesioning the proportion of SNpc neurons that expressed tyrosine hydroxylase fell from 90% to 38% but returned to 78% by 32 weeks. We discuss these phenotype changes in the context of neurogenesis. Significant reductions in dopamine levels in rats with medium (30-75%) lesions returned to normal by 16 weeks whereas recovery was not observed if lesions were larger than 75%. Finally, rotational behaviour of animals in response to amphetamine was examined. The clear rightward turning bias observed after 2 weeks recovered by 16 weeks in animals with medium (30-75%) lesions but was still present when lesions were larger. These studies provide insights into the processes that regulate sprouting responses in the central nervous system following injury.
Neuropeptide Y (NPY), a 36-amino-acid peptide, mediates biological effects by activating Y1, Y2, Y5, and y6 receptors. NPY neurons innervate many brain regions, including the hypothalamus, where NPY is involved in regulation of a broad range of homeostatic functions. We examined, by immunohistochemistry with tyramide signal amplification, the expression of the NPY Y2 receptor (Y2R) in the mouse brain with a newly developed rabbit polyclonal antibody. Y2R immunoreactivity was specific with its absence in Y2R knockout (KO) mice and in adjacent sections following preadsorption with the immunogenic peptide (10(-5) M). Y2R-positive processes were located in many brain regions, including the olfactory bulb, some cortical areas, septum, basal forebrain, nucleus accumbens, amygdala, hippocampus, hypothalamus, substantia nigra compacta, locus coeruleus, and solitary tract nucleus. However, colchicine treatment was needed to detect Y2R-like immunoreactivity in cell bodies in many, but not all, areas. The densest distributions of cell bodies were located in the septum basal forebrain, including the bed nucleus, and amygdala, with lower density in the anterior olfactory nucleus, nucleus accumbens, caudal striatum, CA1, CA2, and CA3 hippocampal fields, preoptic nuclei lateral hypothalamus, and A13 DA cells. The widespread distribution of Y2R-positive cell bodies and fibers suggests that NPY signaling through the Y2R is common in the mouse brain. Localization of the Y2R suggests that it is mostly presynaptic, a view supported by its frequent absence in cell bodies in the normal mouse and its dramatic increase in cell bodies of colchicine-treated mice.
Summary Purpose Ethosuximide (ESX) is a drug of choice for the symptomatic treatment of absence seizures. Chronic treatment with ESX has been reported to have disease-modifying anti-epileptogenic activity in the WAG/Rij rat model of genetic generalised epilepsy (GGE) with absence seizures. Here we examined whether chronic treatment with ESX (i) possesses anti-epileptogenic effects in the GAERS model of GGE, (ii) is associated with a mitigation of behavioural comorbidities, and (iii) influences gene expression in the somatosensory cortex region where seizures are thought to originate. Methods GAERS and Non-Epileptic Control (NEC) rats were chronically treated with ESX (in drinking water) or control (tap water) from 3 to 22 weeks of age. Subsequently, all animals received tap water only for another 12 weeks to assess enduring effects of treatment. Seizure frequency and anxiety-like behaviours were serially assessed throughout the experimental paradigm. Treatment effects on the expression of key components of the epigenetic molecular machinery, the DNA methyltransferase enzymes, were assessed using qPCR. Key findings ESX treatment significantly reduced seizures in GAERS during the treatment phase, and this effect was maintained during the 12 weeks post-treatment phase (p<0.05). Further, the anxiety-like behaviours present in GAERS were reduced by ESX treatment (p<0.05). Molecular analysis revealed that ESX treatment was associated with increased expression of DNA methyltransferase enzyme mRNA in cortex. Significance Chronic ESX treatment has disease-modifying effects in the GAERS model of GGE, with anti-epileptogenic effects against absence seizures and mitigation of behavioural comorbidities. The cellular mechanism for these effects may involve epigenetic modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.