Abstract. The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004-2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≈2000 km in length.The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H in km). By varying the values of β and H so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile N e (z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10 −5 W/m 2 at 0.1-0.8 nm), each giving rise to a different time development of signal perturbation.The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. N e (74 km)=2.16×10 8 m −3 to the value induced by an M5 class flare, up to N e (74 km)=4×10 10 m −3 is obtained. The β parameter is found to range from 0.30-0.49 1/km and the reflection height H to vary from 74-63 km. The changes in N e (z) during the flares, within height range z=60 to 90 km are determined, as well.
A simultaneous analysis of solar are X-ray irradiance and VLF signal amplitude on the GQD/22.1 kHz trace was carried out. Solar are data were taken from GOES 12 satellite listings. The VLF amplitude data were recorded by means of the AbsPAL (Absolute Phase and Amplitude Logger) at the Institute of Physics, Belgrade, Serbia. It was found that solar are events from class C to class X affect the VLF signal amplitude in various ways and can be classified according to the type of effect produced in the Earth-ionosphere waveguide on the VLF propagation.
An analysis of four solar flare X-ray irradiance effects on VLF signal amplitude and phase delay variations on the NAA/24.0 kHz signal trace during the period from 2005 September to 2006 December was carried out. Solar flare data were taken from the GOES12 satellite one-minute listings. For the VLF data, recordings at the Institute of Physics, Belgrade were used. It was found that solar flare events affect VLF wave propagation in the Earth-ionosphere waveguide lowering the changes of the ionosphere electron density height profiles. This follows from the variation during the solar flare events of the following propagation parameters: the sharpness of the lower edge of the ionosphere and the reflection height.
An analysis of D-region electron density height profile variations, induced by four isolated solar X-ray flares during period from September 2005 to December 2006, based on the amplitude and the phase delay perturbation of 22.1 kHz signal trace from Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E), coded GQD, was carried out. Solar flare data were taken from NOAA GOES12 satellite one-minute listings. For VLF data acquisition and recordings at the Institute of Physics, Belgrade, Serbia, the AbsPAL system was used. Starting from LWPCv21 code (Ferguson, 1998), the variations of the Earth-ionosphere waveguide characteristic parameters, sharpness and reflection height, were estimated during the flare conditions. It was found that solar flare events affected the VLF wave propagation in the Earth-ionosphere waveguide by changing the lower ionosphere electron density height profile, in a different way, for different solar flare events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.