An integrated framework for density-based cluster analysis, outlier detection, and data visualization is introduced in this article. The main module consists of an algorithm to compute hierarchical estimates of the level sets of a density, following Hartigan's classic model of density-contour clusters and trees. Such an algorithm generalizes and improves existing density-based clustering techniques with respect to different aspects. It provides as a result a complete clustering hierarchy composed of all possible density-based clusters following the nonparametric model adopted, for an infinite range of density thresholds. The resulting hierarchy can be easily processed so as to provide multiple ways for data visualization and exploration. It can also be further postprocessed so that: (i) a normalized score of "outlierness" can be assigned to each data object, which unifies both the global and local perspectives of outliers into a single definition; and (ii) a "flat" (i.e., nonhierarchical) clustering solution composed of clusters extracted from local cuts through the cluster tree (possibly corresponding to different density thresholds) can be obtained, either in an unsupervised or in a semisupervised way. In the unsupervised scenario, the algorithm corresponding to this postprocessing module provides a global, optimal solution to the formal problem of maximizing the overall stability of the extracted clusters. If partially labeled objects or instance-level constraints are provided by the user, the algorithm can solve the problem by considering both constraints violations/satisfactions and cluster stability criteria. An asymptotic complexity analysis, both in terms of running time and memory space, is described. Experiments are reported that involve a variety of synthetic and real datasets, including comparisons with state-of-the-art, density-based clustering and (global and local) outlier detection methods.
One of the most challenging aspects of clustering is validation, which is the objective and quantitative assessment of clustering results. A number of different relative validity criteria have been proposed for the validation of globular, clusters. Not all data, however, are composed of globular clusters. Density-based clustering algorithms seek partitions with high density areas of points (clusters, not necessarily globular) separated by low density areas, possibly containing noise objects. In these cases relative validity indices proposed for globular cluster validation may fail. In this paper we propose a relative validation index for density-based, arbitrarily shaped clusters. The index assesses clustering quality based on the relative density connection between pairs of objects. Our index is formulated on the basis of a new kernel density function, which is used to compute the density of objects and to evaluate the within-and between-cluster density connectedness of clustering results. Experiments on synthetic and real world data show the effectiveness of our approach for the evaluation and selection of clustering algorithms and their respective appropriate parameters. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.