In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments.
A new self-healing multiphase polymer is developed in which a pervasive network of dynamic metal-ligand (zinc-imidazole) interactions are programmed in the soft matrix of a hard/soft two-phase brush copolymer system. The mechanical and dynamic properties of the materials can be tuned by varying a number of molecular parameters (e.g., backbone/brush degree of polymerization and brush density) as well as the ligand/metal ratio. Following mechanical damage, these thermoplastic elastomers show excellent self-healing ability under ambient conditions without any intervention.
Polymers that repair themselves after mechanical damage can significantly improve their durability and safety. A major goal in the field of self-healing materials is to combine robust mechanical and efficient healing properties. Here, we show that incorporation of sacrificial bonds into a self-repairable network dramatically improves the overall mechanical properties. Specifically, we use simple secondary amide side chains to create dynamic energy dissipative hydrogen bonds in a covalently cross-linked polymer network, which can self-heal via olefin cross-metathesis. We envision that this straightforward sacrificial bonding strategy can be employed to improve mechanical properties in a variety of self-healing systems.
Tunable mechanical response under dynamic and static loading is desirable for many technological applications. Traditionally, mechanical performance of polymeric materials is controlled by modulating structural (i.e., molecular weight, chain packing, or cross-link density) or temporal parameters (such as kinetics of the exchange of dynamic cross-linkers). Metal–ligand interactions are uniquely suited to control both structural and temporal parameters as the thermodynamics and kinetics of mechanically active cross-linkers can be varied by careful selection of metal without significant synthetic modification of the polymer backbone. Here, we have demonstrated that it is possible to engineer desired mechanical properties in a metallopolymer with a high degree of tunability by simply changing the type and amount of added metal. Specifically, we cross-linked an imidazole-containing brush copolymer system with the divalent cations of zinc, copper, and cobalt. Using rheology and tensile experiments, we have correlated the emergent mechanical properties to the stoichiometric ratio of ligand to metal as well as the coordination number and ligand exchange mechanism of the imidazole–metal cross-links. In contrary to the general view that unbound free ligands are normally regarded as mechanically inactive dangling chains in metallopolymer networks, this study clearly shows that they can play a critical role in stress distribution and chain relaxation. Importantly, this work shows for the first time that it is possible to simultaneously control both the structure of networks and the temporal response of bulk materials using dynamic association of weak and monodentate ligands with transition metals.
Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials-fatty-acid-modified elastin-like polypeptides-using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.