The Particle Swarm Optimization (PSO) algorithm, as one of the latest algorithms inspired from the nature, was introduced in the mid 1990s and since then, it has been utilized as an optimization tool in various applications, ranging from biological and medical applications to computer graphics and music composition. In this paper, following a brief introduction to the PSO algorithm, the chronology of its evolution is presented and all major PSO-based methods are comprehensively surveyed. Next, these methods are studied separately and their important factors and parameters are summarized in a comparative table. In addition, a new taxonomy of PSO-based methods is presented. It is the purpose of this paper is to present an overview of previous and present conditions of the PSO algorithm as well as its opportunities and challenges. Accordingly, the history, various methods, and taxonomy of this algorithm are discussed and its different applications together with an analysis of these applications are evaluated.
In this paper two novel Particle Swarm Optimization (PSO)-based algorithms are presented for robot path planning with respect to two objectives, the shortest and smoothest path criteria. The first algorithm is a hybrid of the PSO and the Probabilistic Roadmap (PRM) methods, in which the PSO serves as the global planner whereas the PRM performs the local planning task. The second algorithm is a combination of the New or Negative PSO (NPSO) and the PRM methods. Contrary to the basic PSO in which the best position of all particles up to the current iteration is used as a guide, the NPSO determines the most promising direction based on the negative of the worst particle position. The two objective functions are incorporated in the PSO equations, and the PSO and PRM are combined by adding good PSO particles as auxiliary nodes to the random nodes generated by the PRM. Both the PSO+PRM and NPSO+PRM algorithms are compared with the pure PRM method in path length and runtime. The results showed that the NPSO has a slight advantage over the PSO, and the generated paths are shorter and smoother than those of the PRM and are calculated in less time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.