Many calibration techniques have been developed for the Soil and Water Assessment Tool (SWAT). Among them, the SWAT calibration and uncertainty program (SWAT-CUP) with sequential uncertainty fitting 2 (SUFI-2) algorithm is widely used and several objective functions have been implemented in its calibration process. In this study, eight different objective functions were used in a calibration of stream flow of the Pursat River Basin of Cambodia, a tropical monsoon and forested watershed, to examine their influences on the calibration results, parameter optimizations, and water resources estimations. As results, many objective functions performed better than satisfactory in calibrating the SWAT model. However, different objective functions defined different fitted values and sensitivity rank of the calibrated parameters, except Nash–Sutcliffe efficiency (NSE) and ratio of standard deviation of observations to root mean square error (RSR) which are equivalent and produced quite identical simulation results including parameter sensitivity and fitted parameter values, leading to the same water balance components and water yields estimations. As they generated reasonable fitted parameter values, either NSE or RSR gave better estimation results of annual average water yield and other water balance components such as annual average evapotranspiration, groundwater flow, surface runoff, and lateral flow according to the characteristics of the river basin and the results and data of previous studies. Moreover, either of them was also better in calibrating base flow, falling limb, and overall the entire flow phases of the hydrograph in this area.
Artificial capillary barriers (CBs) are used to improve root zone conditions as they can keep water and nutrients in the root zone by limiting downward percolation. Numerical analysis is one of the promising tools for evaluating CB systems’ performance during the cultivation of leafy vegetables. This study aims to investigate the effects of the CB system on soil water dynamics during spinach cultivation in a soil column under different irrigation scenarios using HYDRUS (2D/3D) by comparing uniform (UNI), line-source (LSI), and plant-targeted (PTI) irrigations combined with alternative irrigation schedules. Simulation results of volumetric soil water contents were generally corresponding to measured data. Simulation results with various hypothetical irrigation scenarios exhibited that the CB was an effective system to diminish percolation losses and improve the root zone’s soil water storage capacity. On the other hand, evaporation loss can be increased as more water is maintained near the surface. While this loss can be significantly minimized by reducing the water application area, the irrigation amount must be carefully defined because applying water in a smaller area may accelerate downward water movement so that the water content at the CB interface can reach close to saturation. In addition to the malfunction of the CB layer, it may also cause a reduction of plant root water uptake (RWU) because the root zone is too wet. Among evaluated irrigation scenarios, irrigating every two days with PTI was the best scenario for the spinach as water use efficiency was greatly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.