Objective
Longitudinal structural MRI studies have shown that patients with schizophrenia have progressive brain tissue loss after onset. Recurrent relapses are believed to play a role in this loss, but the relationship between relapse and structural MRI measures has not been rigorously assessed. The authors analyzed longitudinal data to examine this question.
Methods
The authors studied data from 202 patients drawn from the Iowa Longitudinal Study of first-episode schizophrenia for whom adequate structural MRI data were available (N=659 scans) from scans obtained at regular intervals over an average of 7 years. Because clinical follow-up data were obtained at 6-month intervals, the authors were able to compute measures of relapse number and duration and relate them to structural MRI measures. Because higher treatment intensity has been associated with smaller brain tissue volumes, the authors also examined this countereffect in terms of dose-years.
Results
Relapse duration was related to significant decreases in both general (e.g., total cerebral volume) and regional (e.g., frontal) brain measures. Number of relapses was unrelated to brain measures. Significant effects were also observed for treatment intensity.
Conclusions
Extended periods of relapse may have a negative effect on brain integrity in schizophrenia, suggesting the importance of implementing proactive measures that may prevent relapse and improve treatment adherence. By examining the relative balance of effects, that is, relapse duration versus antipsychotic treatment intensity, this study sheds light on a troublesome dilemma that clinicians face. Relapse prevention is important, but it should be sustained using the lowest possible medication dosages that will control symptoms.
Background
The RTK/PI3K/AKT pathway plays key roles in the development and progression of many cancers, including GBM. As a regulatory molecule and a potential drug target, the oncogenic role of AKT has been substantially studied. Three isoforms of AKT have been identified, including AKT1, AKT2 and AKT3, but their individual functions in GBM remain controversial. Moreover, it is not known if there are more
AKT
alternative splicing variants.
Methods
High-throughput RNA sequencing and quantitative reverse transcription-PCR were used to identify the differentially expressed circRNAs in GBM samples and in paired normal tissues. High throughput RNA sequencing was used to identify circ-AKT3 regulated signaling pathways. Mass spectrometry, western blotting and immunofluorescence staining analyses were used to validate AKT3-174aa expression. The tumor suppressive role of AKT3-174aa was validated in vitro and in vivo. The competing interaction between AKT3-174aa and p-PDK1 was investigated by mass spectrometry and immunoprecipitation analyses.
Results
Circ-AKT3 is a previously uncharacterized
AKT
transcript variant. Circ-AKT3 is expressed at low levels in GBM tissues compared with the expression in paired adjacent normal brain tissues. Circ-AKT3 encodes a 174 amino acid (aa) novel protein, which we named AKT3-174aa, by utilizing overlapping start-stop codons. AKT3-174aa overexpression decreased the cell proliferation, radiation resistance and in vivo tumorigenicity of GBM cells, while the knockdown of circ-AKT3 enhanced the malignant phenotypes of astrocytoma cells. AKT3-174aa competitively interacts with phosphorylated PDK1, reduces AKT-thr308 phosphorylation, and plays a negative regulatory role in modulating the PI3K/AKT signal intensity.
Conclusions
Our data indicate that the impaired circRNA expression of the
AKT3
gene contributes to GBM tumorigenesis, and our data corroborate the hypothesis that restoring AKT3-174aa while inhibiting activated AKT may provide more benefits for certain GBM patients.
Electronic supplementary material
The online version of this article (10.1186/s12943-019-1056-5) contains supplementary material, which is available to authorized users.
More judicious use of cephalosporins, especially 3rd-generation cephalosporins, may decrease ESBL-producing E. coli or K. pneumoniae bacteremia, and also improve patient outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.