Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) alpha-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.
Natural killer T (NKT) cells recognize glycosphingolipids presented by CD1d molecules and have been linked to defense against microbial infections. Previously defined foreign glycosphingolipids recognized by NKT cells are uniquely found in nonpathogenic sphingomonas bacteria. Here we show that mouse and human NKT cells also recognized glycolipids, specifically a diacylglycerol, from Borrelia burgdorferi, which causes Lyme disease. The B. burgdorferi-derived, glycolipid-induced NKT cell proliferation and cytokine production and the antigenic potency of this glycolipid was dependent on acyl chain length and saturation. These data indicate that NKT cells recognize categories of glycolipids beyond those in sphingomonas and suggest that NKT cell responses driven by T cell receptor-mediated glycolipid recognition may provide protection against diverse pathogens.
Severe acute respiratory syndrome (SARS) is an infectious disease caused by a novel human coronavirus. Currently, no effective antiviral agents exist against this type of virus. A cell-based assay, with SARS virus and Vero E6 cells, was developed to screen existing drugs, natural products, and synthetic compounds to identify effective anti-SARS agents. Of >10,000 agents tested, Ϸ50 compounds were found active at 10 M; among these compounds, two are existing drugs (Reserpine 13 and Aescin 5) and several are in clinical development. These 50 active compounds were tested again, and compounds 2-6, 10, and 13 showed active at 3 M. The 50% inhibitory concentrations for the inhibition of viral replication (EC50) and host growth (CC50) were then measured and the selectivity index (SI ؍ CC50͞EC50) was determined. The EC50, based on ELISA, and SI for Reserpine, Aescim, and Valinomycin are 3.4 M (SI ؍ 7.3), 6.0 M (SI ؍ 2.5), and 0.85 M (SI ؍ 80), respectively. Additional studies were carried out to further understand the mode of action of some active compounds, including ELISA, Western blot analysis, immunofluorescence and flow cytometry assays, and inhibition against the 3CL protease and viral entry. Of particular interest are the two anti-HIV agents, one as an entry blocker and the other as a 3CL protease inhibitor (Ki ؍ 0.6 M).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.