As one of the critical state parameters of the battery management system, the state of charge (SOC) of lithium batteries can provide an essential reference for battery safety management, charge/discharge control, and the energy management of electric vehicles (EVs). To analyze the application of deep learning in electric vehicles’ power battery SOC estimation, this study reviewed the technical process, common public datasets, and the neural networks used, as well as the structural characteristics and advantages and disadvantages of lithium battery SOC estimation in deep learning methods. First, the specific technical processes of the deep learning method for SOC estimation were analyzed, including data collection, data preprocessing, feature engineering, model training, and model evaluation. Second, the current commonly and publicly used lithium battery dataset was summarized. Then, the input variables, data sets, errors, and advantages and disadvantages of three types of deep learning methods were obtained using the structure of the neural network used for training as the classification criterion; further, the selection of the deep learning structure for SOC estimation was discussed. Finally, the challenges and future development directions of lithium battery SOC estimation using the deep learning method were explained. Over all, this review provides insights into deep learning for EVs’ Li-ion battery SOC estimation in the future.
It is known that it is critical for train rescheduling problem to address some uncertain disturbances to keep the normal condition of railway traffic. This paper is keen on a mathematical model to reschedule high-speed trains controlled by the quasi-moving blocking signalling system impacted by multidisturbances (i.e., primary delay, speed limitation, and siding line blockage). To be specific, a mixed-integer linear programming is formulated based on an improved alternative graph theory, by the means of rerouting, reordering, retiming, and train control. In order to adjust the train speed and find the best routes for trains, the set of alternative arcs and alternative arrival/departure paths are considered in the constraints, respectively. Due to this complex NP-hard problem, a two-step algorithm with three scheduling rules based on a commercial optimizer is applied to solve the problem efficiently in a real-word case, and the efficiency, validity, and feasibility of this method are demonstrated by a series of experimental tests. Finally, the graphical timetables rescheduled are analysed in terms of free conflicts of the solution. Consequently, the proposed mathematical model enriches the existing theory about train rescheduling, and it can also assist train dispatchers to figure out disturbances efficiently.
As one of the critical state parameters of the battery management system, lithium battery state of charge (SOC) can provide an essential reference for battery safety management, charge/discharge control, and energy management of electric vehicles. To analyze the application of deep learning in electric vehicle power battery SOC estimation, this study reviewed the technical process, common public datasets, and the neural networks used, structural characteristics, advantages and disadvantages of lithium battery SOC estimation in deep learning method. First, the specific technical processes of the deep learning method for SOC estimation were analyzed, including data collection, data preprocessing, feature engineering, model training, and model evaluation. Secondly, the current commonly and publicly used lithium battery dataset was summarized. Then, the input variables, data sets, errors, and advantages and disadvantages of four types of deep learning methods, were concluded using the structure of neural network used for training as the classification criterion. Finally, the challenges and future development directions of lithium battery SOC estimation in deep learning method were explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.