As in other eukaryotes, protein kinases play major regulatory roles in filamentous fungi. Although the genomes of many plant pathogenic fungi have been sequenced, systematic characterization of their kinomes has not been reported. The wheat scab fungus Fusarium graminearum has 116 protein kinases (PK) genes. Although twenty of them appeared to be essential, we generated deletion mutants for the other 96 PK genes, including 12 orthologs of essential genes in yeast. All of the PK mutants were assayed for changes in 17 phenotypes, including growth, conidiation, pathogenesis, stress responses, and sexual reproduction. Overall, deletion of 64 PK genes resulted in at least one of the phenotypes examined, including three mutants blocked in conidiation and five mutants with increased tolerance to hyperosmotic stress. In total, 42 PK mutants were significantly reduced in virulence or non-pathogenic, including mutants deleted of key components of the cAMP signaling and three MAPK pathways. A number of these PK genes, including Fg03146 and Fg04770 that are unique to filamentous fungi, are dispensable for hyphal growth and likely encode novel fungal virulence factors. Ascospores play a critical role in the initiation of wheat scab. Twenty-six PK mutants were blocked in perithecia formation or aborted in ascosporogenesis. Additional 19 mutants were defective in ascospore release or morphology. Interestingly, F. graminearum contains two aurora kinase genes with distinct functions, which has not been reported in fungi. In addition, we used the interlog approach to predict the PK-PK and PK-protein interaction networks of F. graminearum. Several predicted interactions were verified with yeast two-hybrid or co-immunoprecipitation assays. To our knowledge, this is the first functional characterization of the kinome in plant pathogenic fungi. Protein kinase genes important for various aspects of growth, developmental, and infection processes in F. graminearum were identified in this study.
Fusarium head blight (FHB) caused by Fusarium graminearum is a destructive disease of wheat and barley worldwide. In a previous study of systematic characterization of protein kinase genes in F. graminearum, mutants of three putative components of the osmoregulation MAP kinase pathway were found to have distinct colony morphology and hyphal growth defects on PDA plates. Because the osmoregulation pathway is not known to regulate aerial hyphal growth and branching, in this study we further characterized the functions of the FgHog1 pathway in growth, pathogenesis, and development. The Fghog1, Fgpbs2, and Fgssk2 mutants were all reduced in growth rate, aerial hyphal growth, and hyphal branching angle. These mutants were not only hypersensitive to osmotic stress but also had increased sensitivity to oxidative, cytoplasm membrane, and cell wall stresses. The activation of FgHog1 was blocked in the Fgpbs2 and Fgssk2 mutants, indicating the sequential activation of FgSsk2-FgPbs2-FgHog1 cascade. Interestingly, the FgHog1 MAPK pathway mutants appeared to be sensitive to certain compounds present in PDA. They were female sterile but retained male fertility. We also used the metabolomics profiling approach to identify compatible solutes that were accumulated in the wild type but not in the Fghog1 deletion mutant. Overall, our results indicate that the FgSsk2-FgPbs2-FgHog1 MAPK cascade is important for regulating hyphal growth, branching, plant infection, and hyperosmotic and general stress responses in F. graminearum.
Interactions of transcription factors (TFs) with DNA regulatory sequences, known as enhancers, specify cell identity during animal development. Unlike TFs, the origin and evolution of enhancers has been difficult to trace. We drove zebrafish and mouse developmental transcription using enhancers from an evolutionarily distant marine sponge. Some of these sponge enhancers are located in highly conserved microsyntenic regions, including an Islet enhancer in the Islet-Scaper region. We found that Islet enhancers in humans and mice share a suite of TF binding motifs with sponges, and that they drive gene expression patterns similar to those of sponge and endogenous Islet enhancers in zebrafish. Our results suggest the existence of an ancient and conserved, yet flexible, genomic regulatory syntax that has been repeatedly co-opted into cell type–specific gene regulatory networks across the animal kingdom.
Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism.
Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of ␣, , and ␥ subunits, leading to dissociation of the G␣ subunit from the G␥ subunit. While the G␣ subunit is imperative for downstream signaling, the G␥ subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the G␥ subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with G and tethers G␥ to the Golgi apparatus. Overexpression of RKTG impedes the interaction of G␥ with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the 2-adrenergic receptor (2AR), and alters 2AR desensitization. In addition, RKTG inhibits G␥-and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced G translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering G␥ to the Golgi apparatus and thereby attenuating the functions of G␥.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.