In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.
Hepatitis B virus (HBV) remains a challenging public-health issue in China. Hepatitis B carriers and patients suffer not only physically but also experience strong discrimination and stigma. China's rural population is 629 million. Thus, there is a great need to understand the situation surrounding HBV-related discrimination in everyday life in rural China. We studied 6,538 participants (18 y old) from 42 villages across 7 provinces (districts). Many studies have addressed discrimination against those with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). However, few studies have addressed HBV-related discrimination. We found that the fear of HBV infection, not lack of knowledge about it, predominantly leads to HBV-related discrimination (although limited knowledge is also a cause). Notably, receiving the HBV vaccination contributes to reduced discrimination. In addition, the existence of fewer misunderstandings about false HBV transmission routes plays a more important role in discrimination than does understanding of true HBV transmission routes. Therefore, to reduce HBV-related discrimination, policy makers should consider eliminating HBV-related fear, strengthening adult HBV immunization programs, developing large-scale education dissemination about HBV transmission routes and non-transmission routes, and paying greater attention to target populations.
BackgroundNeuroinflammation plays hypertensive roles in the uninjured autonomic nuclei of the central nervous system, while its mechanisms remain unclear. The present study is to investigate the effect of neuroinflammation on autophagy in the neurons of the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside.MethodsStress-induced hypertension (SIH) was induced by electric foot-shock stressors with noise interventions in rats. Systolic blood pressure (SBP) and the power density of the low frequency (LF) component of the SAP spectrum were measured to reflect sympathetic vasomotor activity. Microglia activation and pro-inflammatory cytokines (PICs (IL-1β, TNF-α)) expression in the RVLM were measured by immunoblotting and immunostaining. Autophagy and autophagic vacuoles (AVs) were examined by autophagic marker (LC3 and p62) expression and transmission electron microscopy (TEM) image, respectively. Autophagy flux was evaluated by RFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors transfected into the RVLM. Tissue levels of glutamate, gamma aminobutyric acid (GABA), and plasma levels of norepinephrine (NE) were measured by using high-performance liquid chromatography (HPLC) with electrochemical detection. The effects of the cisterna magna infused minocycline, a microglia activation inhibitor, on the abovementioned parameters were analyzed.ResultsSIH rats showed increased SBP, plasma NE accompanied by an increase in LF component of the SBP spectrum. Microglia activation and PICs expression was increased in SIH rats. TEM demonstrated that stress led to the accumulation of AVs in the RVLM of SIH rats. In addition to the Tf-LC3 assay, the concurrent increased level of LC3-II and p62 suggested the impairment of autophagic flux in SIH rats. To the contrary, minocycline facilitated autophagic flux and induced a hypotensive effect with attenuated microglia activation and decreased PICs in the RVLM of SIH rats. Furthermore, SIH rats showed higher levels of glutamate and lower level of GABA in the RVLM, while minocycline attenuated the decrease in GABA and the increase in glutamate of SIH rats.ConclusionsCollectively, we concluded that the neuroinflammation might impair autophagic flux and induced neural excitotoxicity in the RVLM neurons following SIH, which is involved in the development of SIH.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-017-0942-2) contains supplementary material, which is available to authorized users.
Background: Microglial mediated neuroinflammation in the rostral ventrolateral medulla (RVLM) plays roles in the etiology of stress-induced hypertension (SIH). It was reported that autophagy influenced inflammation via immunophenotypic switching of microglia. High-mobility group box 1 (HMGB1) acts as a regulator of autophagy and initiates the production of proinflammatory cytokines (PICs), but the underlying mechanisms remain unclear. Methods: The stressed mice were subjected to intermittent electric foot shocks plus noises administered for 2 h twice daily for 15 consecutive days. In mice, blood pressure (BP) and renal sympathetic nerve activity (RSNA) were monitored by noninvasive tail-cuff method and platinum-iridium electrodes placed respectively. Microinjection of siRNA-HMGB1 (siHMGB1) into the RVLM of mice to study the effect of HMGB1 on microglia M1 activation was done. mRFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors were transfected into the RVLM to evaluate the process of autolysosome formation/autophagy flux. The expression of RAB7, lysosomal-associated membrane protein 1 (LAMP1), and lysosomal pH change were used to evaluate lysosomal function in microglia. Mitophagy was identified by transmission electron microscopic observation or by checking LC3 and MitoTracker colocalization under a confocal microscope. Results: We showed chronic stress increased cytoplasmic translocations of HMGB1 and upregulation of its receptor RAGE expression in microglia. The mitochondria injury, oxidative stress, and M1 polarization were attenuated in the RVLM of stressed Cre-CX3CR1/RAGE fl/fl mice. The HMGB1/RAGE axis increased at the early stage of stress-induced mitophagy flux while impairing the late stages of mitophagy flux in microglia, as revealed by decreased GFP fluorescence quenching of GFP-RFP-LC3-II puncta and decreased colocalization of lysosomes with mitochondria. The expressions of RAB7 and LAMP1 were decreased in the stressed microglia, while knockout of RAGE reversed these effects and caused an increase in acidity of lysosomes. siHMGB1 in the RVLM resulted in BP lowering and RSNA decreasing in SIH mice. When the autophagy inducer, rapamycin, is used to facilitate the mitophagy flux, this treatment results in attenuated NF-κB activation and reduced PIC release in exogenous disulfide HMGB1 (ds-HMGB1)-stimulated microglia. Conclusions: Collectively, we demonstrated that inhibition of the HMGB1/RAGE axis activation led to increased stress-induced mitophagy flux, hence reducing the activity of microglia-mediated neuroinflammation and consequently reduced the sympathetic vasoconstriction drive in the RVLM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.