This paper discusses experiences and architectural concepts developed and tested aimed at acquisition and processing of biomedical data in large scale system for elderly (patients) monitoring. Major assumptions for the research included utilisation of wearable and mobile technologies, supporting maximum number of inertial and biomedical data to support decision algorithms. Although medical diagnostics and decision algorithms have not been the main aim of the research, this preliminary phase was crucial to test capabilities of existing off-the-shelf technologies and functional responsibilities of system’s logic components. Architecture variants contained several schemes for data processing moving the responsibility for signal feature extraction, data classification and pattern recognition from wearable to mobile up to server facilities. Analysis of transmission and processing delays provided architecture variants pros and cons but most of all knowledge about applicability in medical, military and fitness domains. To evaluate and construct architecture, a set of alternative technology stacks and quantitative measures has been defined. The major architecture characteristics (high availability, scalability, reliability) have been defined imposing asynchronous processing of sensor data, efficient data representation, iterative reporting, event-driven processing, restricting pulling operations. Sensor data processing persist the original data on handhelds but is mainly aimed at extracting chosen set of signal features calculated for specific time windows – varying for analysed signals and the sensor data acquisition rates. Long term monitoring of patients requires also development of mechanisms, which probe the patient and in case of detecting anomalies or drastic characteristic changes tune the data acquisition process. This paper describes experiences connected with design of scalable decision support tool and evaluation techniques for architectural concepts implemented within the mobile and server software.
The aim of this article is to investigate the problem of the existence and computation of inverse series to formal Laurent series, and the composition of formal Laurent series and its properties. Some necessary and sufficient conditions for the existence of inverse series to a certain type formal Laurent series are provided. Moreover, we define a general composition of formal Laurent series and we investigate the Right Distributive Law and the Chain Rule for formal Laurent series. Finally, we provide a sufficient condition for the boundary convergence of formal Laurent series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.