This critical review is dedicated to the anion complexation chemistry of amide- and urea-functionalized (benzo)pyrroles, such as pyrroles, indoles, carbazoles, isoindoles, naphthalenodipyrroles and benzodipyrroles. It provides a comprehensive overview of these simple and neutral anion sensors from the first examples up to very recent studies. There is a discussion of a gradual progress made over time, often based on careful analysis of the properties of former generations that have subsequently led to obtaining excellent effectivities and selectivities. The influence of these species on other fields of chemistry and their applications there are also discussed (57 references).
Catalytic reactions occur readily at sites of starting materials that are both innately reactive and sterically accessible or that are predisposed by a functional group amenable to direct a catalyst. However, selective reactions at unbiased sites of substrates remain challenging and typically require additional pre-activation steps or the use of highly reactive reagents. Herein, we report dual-catalytic transition metal systems that merge a reversible activation cycle with a functionalization cycle, together enabling functionalization of substrates at their inherently unreactive sites. By engaging the Ru-or Fe-catalyzed equilibrium between an alcohol and an aldehyde, Pd-catalyzed b-arylation of aliphatic alcohols and Rh-catalyzed g-hydroarylation of allylic alcohols were developed. The mild conditions, functional group tolerance and broad scope of the methodologies (81 examples) demonstrate the synthetic applicability of the dual-catalytic systems. In a broader context, this work highlights the potential of the multi-catalytic approach to address challenging transformations to circumvent the multi-step procedures and the use of highly reactive reagents in organic synthesis.
File list (2)download file view on ChemRxiv Dydioetal_manuscript1.pdf (1.16 MiB) download file view on ChemRxiv Dydioetal-SI1.pdf (26.35 MiB)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.