In order to better understand the mechanisms of lithium dynamics and to elucidate the influence of defects in lithium mobility, we have studied the Li-ion propagation through natural single crystals of α-spodumene, LiAlSi2O6 and petalite, LiAlSi4O10 using impedance spectroscopy. Electrical conductivity in petalite and α-spodumene is 4–5 orders of magnitude lower than in glasses of the same composition, and three orders of magnitude lower than in synthetic β-spodumene. Conductivity in α-spodumene is anisotropic with conductivity along the c-axis being 0.3–0.4 log units higher than perpendicular to the c-axis. Contrary to α-spodumene, isotropic conductivity was observed for petalite single crystals. Despite the large difference in conductivity values, the activation energies for ionic conduction of α-spodumene along the c-axis (74 to 86 kJ/mol) are only slightly higher than for LiAlSi2O6 and LiAlSi4O10 glasses (∼67 kJ/mol). On the other hand, much higher activation energies of 112–134 kJ/mol were determined for petalite. Based on our investigation, a vacancy-controlled transport mechanism is indicated for the densely packed α-spodumene structure, while in the open framework structure of petalite formation and movement of Li interstitials is proposed to be dominant mechanism for charge transfer.
In order to improve our understanding of the Li-mobility in oxide glass networks with Li as the principle mobile particle, electrical conductivity and self-diffusivity of lithium was studied in two phosphate (0.2 Li
Physical properties of solid materials can be strongly modified by pressure treatment at elevated temperatures. This study focuses on the compaction-induced behavior of powdered amorphous solids using Li
In situ temperature-dependent laser-induced photoluminescence and dielectric measurements provide new evidence for the local occurrence of the α → β phase transition near 500 K in the preserved crystalline parts of natural radiation-damaged titanite (sample E2335 with ~24% amorphous fraction, containing Fe and Al impurities). Photoluminescence spectroscopic measurements show an anomaly in the vicinity of 500 K. The temperature-dependent evolution of the real part of the electrical conductivity (σ) and the real (ε') and the imaginary (ε″) part of the complex dielectric permittivity (ε ) of titanite have been measured at various AC frequencies (~1.2-96.8 kHz). Despite the masking and smearing effect of impurities and defects, the temperature-dependent behaviour of ε' and ε″ around the transition temperature of the investigated natural titanite E2335 shows a remarkable similarity to that of the synthetic end-member material (see Zhang et al (1995 Phys. Chem. Miner. 22 41-9)). This study indicates the suitability of photoluminescence and impedance spectroscopy for the detection of phase transitions, even in heavily disordered systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.