Photomagnetic compounds are usually achieved by assembling preorganized individual molecules into rationally designed molecular architectures via the bottom-up approach. Here we show that a magnetic response to light can also be enforced in a nonphotomagnetic compound by applying mechanical stress. The nonphotomagnetic cyano-bridged Fe(II)-Nb(IV) coordination polymer {[Fe(II)(pyrazole)4]2[Nb(IV)(CN)8]·4H2O}n (FeNb) has been subjected to high-pressure structural, magnetic and photomagnetic studies at low temperature, which revealed a wide spectrum of pressure-related functionalities including the light-induced magnetization. The multifunctionality of FeNb is compared with a simple structural and magnetic pressure response of its analog {[Mn(II)(pyrazole)4]2[Nb(IV)(CN)8]·4H2O}n (MnNb). The FeNb coordination polymer is the first pressure-induced spin-crossover photomagnet.
Diverse functional potential of heterometallic systems based on octacyanidometallates places them at the forefront of research into modern molecule-based materials.
Given the recent advent of mononuclear single-molecule magnets (SMMs), a rational approach based on lanthanides with axially elongated f-electron charge cloud (prolate) has only recently received attention. We report herein a new SMM, [Li(THF)4[Er{N(SiMe3)2}3Cl]⋅2 THF, which exhibits slow relaxation of the magnetization under zero dc field with an effective barrier to the reversal of magnetization (ΔEeff/kB =63.3 K) and magnetic hysteresis up to 3 K at a magnetic field sweep rate of 34.6 Oe s(-1). This work questions the theory that oblate or prolate lanthanides must be stabilized with the appropriate ligand framework in order for SMM behavior to be favored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.