Many single-particle tracking data related to the motion in crowded environments exhibit anomalous diffusion behavior. This phenomenon can be described by different theoretical models. In this paper, fractional Brownian motion (FBM) was examined as the exemplary Gaussian process with fractional dynamics. The autocovariance function (ACVF) is a function that determines completely the Gaussian process. In the case of experimental data with anomalous dynamics, the main problem is first to recognize the type of anomaly and then to reconstruct properly the physical rules governing such a phenomenon. The challenge is to identify the process from short trajectory inputs. Various approaches to address this problem can be found in the literature, e.g., theoretical properties of the sample ACVF for a given process. This method is effective; however, it does not utilize all of the information contained in the sample ACVF for a given trajectory, i.e., only values of statistics for selected lags are used for identification. An evolution of this approach is proposed in this paper, where the process is determined based on the knowledge extracted from the ACVF. The designed method is intuitive and it uses information directly available in a new fashion. Moreover, the knowledge retrieval from the sample ACVF vector is enhanced with a learning-based scheme operating on the most informative subset of available lags, which is proven to be an effective encoder of the properties inherited in complex data. Finally, the robustness of the proposed algorithm for FBM is demonstrated with the use of Monte Carlo simulations.
Anomalous diffusion phenomena are observed in many areas of interest. They manifest themselves in deviations from the laws of Brownian motion (BM), e.g. in the non-linear growth (mostly power-law) in time of the ensemble average mean squared displacement (MSD). When we analyze the real-life data in the context of anomalous diffusion, the primary problem is the proper identification of the type of the anomaly. In this paper, we introduce a new statistic, called empirical anomaly measure (EAM), that can be useful for this purpose. This statistic is the sum of the off-diagonal elements of the sample autocovariance matrix for the increments process. On the other hand, it can be represented as the convolution of the empirical autocovariance function with time lags. The idea of the EAM is intuitive. It measures dependence between the ensemble-averaged MSD of a given process from the ensemble-averaged MSD of the classical BM. Thus, it can be used to measure the distance between the anomalous diffusion process and normal diffusion. In this article, we prove the main probabilistic characteristics of the EAM statistic and construct the formal test for the recognition of the anomaly type. The advantage of the EAM is the fact that it can be applied to any data trajectories without the model specification. The only assumption is the stationarity of the increments process. The complementary summary of the paper constitutes of Monte Carlo simulations illustrating the effectiveness of the proposed test and properties of EAM for selected processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.