Acquisition of multiple motor skills without interference is a remarkable ability in daily life. During adaptation to opposing perturbations, a common paradigm to study this ability, each perturbation can be successfully learned when a contextual follow-through movement is associated with the direction of the perturbation. It is still unclear, however, to what extent this learning engages the cognitive explicit process and the implicit process. Here, we untangled the individual contributions of the explicit and implicit components while participants learned opposing visuomotor perturbations, with a second unperturbed follow-through movement. In Exp. 1 we replicated previous adaptation results and showed that follow-through movements also allow learning for opposing visuomotor rotations. For one group of participants in Exp. 2 we isolated strategic explicit learning, while for another group we isolated the implicit component. Our data showed that opposing perturbations could be fully learned by explicit strategies; but when strategy was restricted, distinct implicit processes contributed to learning. In Exp.3, we examined whether learning is influenced by the disparity between the follow-through contexts. We found that the location of follow-through targets had little effect on total learning, yet it led to more instances in which participants failed to learn the task. In Exp. 4, we explored the generalization capability to untrained targets. Participants showed near-flat generalization of the implicit and explicit processes. Overall, our results indicate that follow-through contextual cues might activate, in part, top-down cognitive factors that influence not only the dynamics of the explicit learning, but also the implicit process.
Acquisition of multiple motor skills without interference is a remarkable ability in sport and daily life. During adaptation to opposing perturbations, a common paradigm to study this ability, each perturbation can be successfully learned when a dynamical contextual cue, such as a follow-through movement, is associated with the direction of the perturbation. It is still unclear, however, to what extent this context-dependent learning engages the cognitive strategy-based explicit process and the implicit process that occurs without conscious awareness. Here, we designed four reaching experiments to untangle the individual contributions of the explicit and implicit components while participants learned opposing visuomotor perturbations, with a second unperturbed follow-through movement that served as a contextual cue. In Exp. 1 we replicated previous adaptation results and showed that follow-through movements also allow learning for opposing visuomotor rotations. For one group of participants in Exp. 2 we isolated strategic explicit learning by inducing a 2-sec time delay between movement and end-point feedback, while for another group we isolated the implicit component using the task-irrelevant error-clamp paradigm, in which participants were firmly instructed to aim their reaches directly to the target. Our data showed that opposing perturbations could be fully learned by explicit strategies; but when strategy was restricted, distinct implicit processes contributed to learning. In Exp.3, we examined whether the learned motor behaviors are influenced by the disparity between the follow-through contexts. We found that the location of follow-through targets had little effect on total learning, yet it led to more instances in which participants failed to learn the task. In Exp. 4, we explored the generalization capability to untrained novel targets. Participants showed near-flat generalization of the implicit and explicit processes to adjacent targets. Overall, our results indicate that follow-through contextual cues influence activity of both implicit and explicit processes during separation of motor memories. Furthermore, the follow-through context might activate, in part, top-down cognitive factors that influence not only the dynamics of the explicit learning but also the implicit process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.