The complete genome sequences of three new badnaviruses associated with yam (Dioscorea spp.) originating from Fiji, Papua New Guinea and Samoa were determined following rolling circle amplification of the virus genomes. The full-length genomes consisted of a single molecule of circular double-stranded DNA of 8106bp for isolate FJ14, 7871bp for isolate PNG10 and 7426bp for isolate SAM01. FJ14 and PNG10 contained three open reading frames while SAM01 had an additional open reading frame which partially overlapped the 3' end of ORF 3. Amino acid sequence analysis of ORF 3 from the three isolates confirmed the presence of conserved motifs typical of other badnaviruses. Phylogenetic analysis revealed the sequences to be closely related to other Dioscorea-infecting badnaviruses. FJ14 and PNG10 appear to be new species, which we have tentatively named dioscorea bacilliform ES virus (DBESV) and dioscorea bacilliform AL virus 2 (DBALV2), respectively, while SAM01 represents a Pacific isolate of the recently published dioscorea bacilliform RT virus 2 and is described as dioscorea bacilliform RT virus 2-[4RT] (DBRTV2-[4RT]).
Taro (Colocasia esculenta) and tannia (Xanthosoma sp.) are important root crops cultivated mainly by small‐scale farmers in sub‐Saharan Africa and the South Pacific. Viruses are known to be one of the most important constraints to production, with infections resulting in severe yield reduction. In 2014 and 2015, surveys were conducted in Ethiopia, Kenya, Tanzania and Uganda to determine the identity of viruses infecting taro in East Africa. Screening of 392 samples collected from the region using degenerate badnavirus primers revealed an incidence of 58–74% among the four countries surveyed, with sequence analysis identifying both Taro bacilliform virus (TaBV) and Taro bacilliform CH virus (TaBCHV). TaBCHV was identified from all four countries while TaBV was identified in all except Ethiopia. Full‐length sequences from representative TaBV and TaBCHV isolates showed that the genome organization of TaBV isolates from East Africa was consistent with previous reports while TaBCHV isolates from East Africa were found to encode only four ORFs, distinct from a previous report from China. Phylogenetic analysis showed that all East African TaBV isolates form a single subgroup within known TaBV isolates, while TaBCHV isolates form at least two distinct subgroups. To the authors' knowledge, this is the first report describing the occurrence and genome organization of TaBV and TaBCHV isolates from East Africa and the first full‐length sequence of the two viruses from tannia.
Yam is an important food staple for millions of people globally, particularly those in the developing countries of West Africa and the Pacific Islands. To sustain the growing population, yam production must be increased amidst the many biotic and abiotic stresses. Plant viruses are among the most detrimental of plant pathogens and have caused great losses of crop yield and quality, including those of yam. Knowledge and understanding of virus biology and ecology are important for the development of diagnostic tools and disease management strategies to combat the spread of yam-infecting viruses. This review aims to highlight current knowledge on key yam-infecting viruses by examining their characteristics, genetic diversity, disease symptoms, diagnostics, and elimination to provide a synopsis for consideration in developing diagnostic strategy and disease management for yam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.