Two flame-based synthesis methods are presented for fabricating ZnO-nanostructure-based UV photodetectors: burner flame transport synthesis (B-FTS)and crucible flame transport synthesis (C-FTS). B-FTS allows rapid growth of ZnO nanotetrapods and in situ bridging of them into electrical contacts. The photo detector made from interconnected ZnO nanotetrapod networks exhibits fast response/recovery times and a high current ratio under UV illumination.
Flexible, electrically conducting, high temperature stable ceramics with very high porosities are fabricated from interpenetrated metal oxide nano‐microstructures in a versatile manner in a novel flame transport synthesis approach. The Young's modulus of these networks can be tuned from wool type to rubber like based on the density, type and interconnections of the building blocks. Semiconducting behavior allows multifunctional applications like the electrical readout of the mechanical history.
Hybrid organic–inorganic perovskites have shown exceptional semiconducting properties and microstructural versatility for inexpensive, solution‐processable photovoltaic and optoelectronic devices. In this work, an all‐solution‐based technique in ambient environment for highly sensitive and high‐speed flexible photodetectors using high crystal quality perovskite nanowires grown on Kapton substrate is presented. At 10 V, the optimized photodetector exhibits a responsivity as high as 0.62 A W−1, a maximum specific detectivity of 7.3 × 1012 cm Hz1/2 W−1, and a rise time of 227.2 µs. It also shows remarkable photocurrent stability even beyond 5000 bending cycles. Moreover, a deposition of poly(methyl methacrylate) (PMMA) as a protective layer on the perovskite yields significantly better stability under ambient air operation: the PMMA‐protected devices are stable for over 30 days. This work demonstrates a cost‐effective fabrication technique for high‐performance flexible photodetectors and opens opportunities for research advancements in broadband and large‐scale flexible perovskite‐based optoelectronic devices.
In recent years, hybrid organic-inorganic halide perovskites have been widely studied for the low-cost fabrication of a wide range of optoelectronic devices, including impressive perovskite-based solar cells. Amongst the key factors influencing the performance of these devices, recent efforts have focused on tailoring the granularity and microstructure of the perovskite films. Albeit, a cost-effective technique allowing to carefully control their microstructure in ambient environmental conditions has not been realized. We report on a solvent-antisolvent ambient processed CH3NH3PbI3−xClx based thin films using a simple and robust solvent engineering technique to achieve large grains (>5 µm) having excellent crystalline quality and surface coverage with very low pinhole density. Using optimized treatment (75% chlorobenzene and 25% ethanol), we achieve highly-compact perovskite films with 99.97% surface coverage to produce solar cells with power conversion efficiencies (PCEs) up-to 14.0%. In these planar solar cells, we find that the density and size of the pinholes are the dominant factors that affect their overall performances. This work provides a promising solvent treatment technique in ambient conditions and paves the way for further optimization of large area thin films and high performance perovskite solar cells.
We demonstrate a new technique that
requires a relatively low temperature
of 670–800 °C to synthesize in 10–20 min high crystalline
quality MoO3 nano- and microbelts and ribbons. The developed
technological process allows rapid synthesis of large amounts of MoO3 nano- and microsheets, belts, and ribbons, and it can be
easily scaled up for various applications. Scanning electron microscopy
(SEM) studies revealed that the MoO3 nano- and microbelts
and ribbons are synthesized uniformly, and the thickness is observed
to vary from 20 to 1000 nm. The detailed structural and vibrational
studies on grown structures confirmed an excellent agreement with
the standard data for orthorhombic α-MoO3. Also,
such freestanding nano- and microstructures can be transferred to
different substrates and dispersed individually. Using focused ion
beam SEM, MoO3-based 2D nano- and microsensors have been
integrated on a chip and investigated in detail. The nanosensor structures
based on MoO3 nano- and microribbons are quite stable and
moderately reversible with respect to rises and drops in ethanol vapors.
It was found that MoO3 nano- and microribbons of various
sizes exhibit different sensitivity and selectivity with respect to
ethanol, methanol, and hydrogen gases. The developed technique has
great potential for further studies of different metal oxides, nano-
and microsensor fabrication, and especially for multifunctional applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.