Let S be a cyclic n-ary sequence. We say that S is a universal cycle ((n, k)-Ucycle) for k-subsets of [n] if every such subset appears exactly once contiguously in S, and is a Ucycle packing if every such subset appears at most once. Few examples of Ucycles are known to exist, so the relaxation to packings merits investigation. A family {S n } of (n, k)-Ucycle packings for fixed k is a near-Ucycle if the length of S n is (1 − o(1)) n k . In this paper we prove that near-(n, k)-Ucycles exist for all k. *
Graph pebbling is a game played on a connected graph G. A player purchases pebbles at a dollar a piece, and hands them to an adversary who distributes them among the vertices of G (called a configuration) and chooses a target vertex r. The player may make a pebbling move by taking two pebbles off of one vertex and moving one pebble to a neighboring vertex. The player wins the game if he can move k pebbles to r. The value of the game (G, k), called the k-pebbling number of G and denoted π k (G), is the minimum cost to the player to guarantee a win. That is, it is the smallest positive integer m of pebbles so that, from every configuration of size m, one can move k pebbles to any target. In this paper, we use the block structure of graphs to investigate pebbling numbers, and we present the exact pebbling number of the graphs whose blocks are complete. We also provide an upper bound for the k-pebbling number of diameter-two graphs, which can be the basis for further investigation into the pebbling numbers of graphs with blocks that have diameter at most two.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.