Background Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. Methods This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18–20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot—Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). Findings Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11–0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32–0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23–6·67]; p=0·004). Among seropositive participant...
Background The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. Methods We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. Results A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. Conclusions Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.)
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-99 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
BackgroundAustralian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined.MethodsABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol.ResultsHere we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry.ConclusionsThe predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.
Bats are increasingly implicated as hosts of highly pathogenic viruses. The underlying virus–host interactions and cellular mechanisms that promote co-existence remain ill-defined, but physiological traits such as flight and longevity are proposed to drive these adaptations. Autophagy is a cellular homeostatic process that regulates ageing, metabolism, and intrinsic immune defense. We quantified basal and stimulated autophagic responses in black flying fox cells, and demonstrated that although black flying fox cells are susceptible to Australian bat lyssavirus (ABLV) infection, viral replication is dampened in these bat cells. Black flying fox cells tolerated prolonged ABLV infection with less cell death relative to comparable human cells, suggesting post-entry mechanisms interference with virus replication. An elevated basal autophagic level was observed and autophagy was induced in response to high virus doses. Pharmacological stimulation of the autophagy pathway reduced virus replication, indicating autophagy acts as an anti-viral mechanism. Enhancement of basal and virus-induced autophagy in bat cells connects related reports that long-lived species possess homeostatic processes that dampen oxidative stress and macromolecule damage. Exemplifying the potential that evolved cellular homeostatic adaptations like autophagy may secondarily act as anti-viral mechanisms, enabling bats to serve as natural hosts to an assortment of pathogenic viruses. Furthermore, our data suggest autophagy-inducing drugs may provide a novel therapeutic strategy for combating lyssavirus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.