Colocalization of small-molecule and neuropeptide transmitters is common
throughout the nervous system of all animals. The resulting co-transmission,
which provides conjoint ionotropic (‘classical’) and
metabotropic (‘modulatory’) actions, includes
neuropeptide-specific aspects that are qualitatively different from those that
result from metabotropic actions of small-molecule transmitter release. Here, we
focus on the flexibility afforded to microcircuits by such co-transmission,
using examples from various nervous systems. Insights from such studies indicate
that co-transmission mediated even by a single neuron can configure microcircuit
activity via an array of contributing mechanisms, operating on multiple
timescales, to enhance both behavioural flexibility and robustness.
Local interneurons provide feed-forward inhibition from retinal ganglion cells (RGCs) to thalamocortical (TC) neurons, but questions remain regarding the timing, magnitude, and functions of this inhibition. Here, we identify two types of inhibition that are suited to play distinctive roles. We recorded excitatory and inhibitory postsynaptic currents (EPSCs/IPSCs) in TC neurons in mouse brain slices and activated individual RGC inputs. In 34% of TC neurons, we identified EPSCs and IPSCs with identical thresholds that were tightly correlated, indicating activation by the same RGC. Such "locked" IPSCs occurred 1 ms after EPSC onset. The remaining neurons had only "nonlocked" inhibition, in which EPSCs and IPSCs had different thresholds, indicating activation by different RGCs. Nonlocked inhibition may refine receptive fields within the LGN by providing surround inhibition. In contrast, dynamic-clamp recordings suggest that locked inhibition improves the precision of synaptically evoked responses in individual TC neurons by eliminating secondary spikes.
The retinogeniculate synapse conveys visual information from the retina to thalamic relay neurons. Here, we examine the mechanisms of short-term plasticity that can influence transmission at this connection in mouse brain slices. Our studies show that synaptic strength is modified by physiological activity patterns due to marked depression at high frequencies. Postsynaptic mechanisms of plasticity make prominent contributions to this synaptic depression. During trains of retinal input stimulation, receptor desensitization attenuates the AMPA EPSC while the NMDA EPSC saturates. This differential plasticity may help explain the distinct roles of these receptors in shaping the relay neuron response to visual stimulation with the AMPA component being important for transient responses, while sustained high frequency responses rely more on the NMDA component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.