Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today's complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist-practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues -as opposed to the top-down or expert-oriented perspectives of traditional science -can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners.
Habitat loss is widely considered the greatest threat to biodiversity. However, habitat loss brings with it myriad other threats that exacerbate impacts to biodiversity. For instance, altered fire regime is associated with habitat loss and fragmentation with unknown consequences to biodiversity. Plant functional groups that rely on fire to complete their life cycle may be adversely affected by disruptions to the natural fire regime, particularly when coupled with population declines due to habitat loss. We used a spatially explicit stochastic population model linked with fire hazard functions to investigate the cumulative effects of habitat loss, fragmentation, and altered fire regime on the expected minimum abundance of a long-lived obligate-seeding shrub, Ceanothus greggii var. perplexans. This species is endemic to the California Floristic Province, a biodiversity hotspot, and is representative of a functional group of plants found in many fire-prone ecosystems. We tested the impact of a range of different fire frequencies under three different combinations of fuel accumulation and weather. The best average fire return interval for population abundance was consistently in the range of 30-50 years. However, observed average fire return intervals in highly fragmented areas can be approximately 20 years or less, and model results show this to be detrimental to C. greggii populations. Results also show that if fires are uncorrelated across habitat fragments then the impact of altered fire regime on populations is worse than the impact of habitat fragmentation because of spatial and temporal decoupling of fire events across the landscape. However, the negative impacts of altered fire regime are outweighed by habitat loss as fragmentation increases. Our results show that large unplanned fires, operating under an altered fire regime, are ultimately detrimental to perennial obligate-seeding shrubs in fragmented landscapes.
Mediterranean ecosystems are among the highest in species richness and endemism globally and are also among the most sensitive to climate and land-use change. Fire is an important driver of ecosystem processes in these systems; however, fire regimes have been substantially changed by human activities. Climate change is predicted to further alter fire regimes and species distributions, leading to habitat loss and threatening biodiversity. It is currently unknown what the population-level effects of these landscape-level changes will be. We linked a spatially explicit stochastic population model to dynamic bioclimate envelopes to investigate the effects of climate change, habitat loss and fragm entation and altered fire regime on population abundances of a long-lived obligate seeding shrub, Ceanothus verrucosus, a rare endemic species of southern California. We tested a range of fire return intervals under the present and two future climate scenarios. We also assessed the impact of potential anthropogenic land-use change by excluding land identified as developable by local governments. We found that the 35-50 year fire return interval resulted in the highest population abundances. Expected minimum population abundance (EMA) declined gradually as fire return interval increased, but declined dramatically for shorter fire intervals. Simulated future development resulted in a 33% decline in EMA, but relatively stable population trajectories over the time frame modeled. Relative changes in EMA for alternative fire intervals were similar for all climate and habitat loss scenarios, except under the more severe climate scenario which resulted in a change in the relative ranking of the fire scenarios. Our results show climate change to be the most serious threat facing obligate seeding shrubs embedded in urban landscapes, resulting in population decline and increased local extirpation, and that likely interactions with other threats increase risks to these species. Taking account of parameter uncertainty did not alter our conclusions.
We assessed population performance of rare plants across a gradient from rural to urban landscapes and evaluated 2 hypotheses central to strategic conservation planning: (1) population performance declines with increasing human dominance and (2) small populations perform poorly relative to larger ones. Assessing these hypotheses is critical to strategic conservation planning. The current conservation paradigm adheres to the well-established ecology theory that small isolated populations, particularly those in human-dominated landscapes, are the least likely to succeed over the long term. Consequently, conservation planning has strongly favored large, remote targets for protection. This shift in conservation toward ecosystem-based programs and protection of populations within large, remote systems has been at the expense of protection of the rarest of the rare species, the dominant paradigm for conservation driven by the endangered species act. Yet, avoiding conservation of small populations appears to be based more on theoretical understanding and expert opinion than empiricism. We used Natural Heritage data from California in an assessment of population performance of rare plants across a landscape with an urban-rural gradient. Population performance did not decrease in urban settings or for populations that were initially small. Our results are consistent with a pattern of few species extinctions within these landscapes over the past several decades. We conclude that these populations within compromised landscapes can contribute to overall biodiversity conservation. We further argue that conservation planning for biodiversity preservation should allocate relatively more resources to protecting urban-associated plant taxa because they may provide conservation benefit beyond simply protecting isolated populations; they may be useful in building social interest in conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.