Background: The inclusion of resistance training in the treatment and management of muscular dystrophy has previously been discouraged, based on mainly anecdotal evidence. There remains a lack of experimental investigation into resistance training in individuals with muscular dystrophy. The aim of the current study was therefore, to determine the effect of a 12-week resistance training programme on muscle strength and functional tasks in ambulatory adults with muscular dystrophy.Methods: Seventeen ambulatory adults with muscular dystrophy (Facioscapulohumeral muscular dystrophy: n = 6, Limb-Girdle muscular dystrophy: n = 6, Becker muscular dystrophy: n = 5) were recruited for this study. Participants attended three testing sessions: one session at baseline, one session after a 12-week control period and one session after a 12-week resistance training period. Each testing session consisted of measurements of isometric knee extensor and knee flexor maximum voluntary contraction (MVC) torque (Cybex dynamometer). Participants also completed a timed sit-to-stand, a four steps-stair ascent, and a four steps-stair decent. The 12-week resistance training period consisted of two supervised sessions a week. Each training session included a 5-min warm-up, a step-up exercise, free-standing or assisted squats, knee flexion and knee extension exercises, and an additional 6 single-joint exercises specific to each individual's needs.Results: Knee flexor MVC torque increased by 13% after the 12-week resistance training programme (p < 0.05), with no change over the control period. Knee extensor MVC torque did not significantly change after the training programme or the control period. Time taken to complete sit-to-stand, stair ascent and stair descent all decreased (improved) following the 12-week training programme (p < 0.05).Conclusions: A twice-a-week, 12-week, resistance training programme resulted in increased knee flexion strength and improvements in functional tasks in ambulatory adults with muscular dystrophy. This provides support for the inclusion of resistance training in the treatment programmes for these forms of muscular dystrophy.
This study aimed to investigate the bio- mechanical response of the hamstring muscles to acute stretching in dancers (D) compared to non-dancers (ND). Maximal range of motion (ROMMax) and stiffness of the hamstrings were assessed in 46 young males, 23 undergraduate students (ND) and 23 professional dancers (D). Ages of the two groups were D 21.5 ± 0.60 years; ND 27.5 ± 0.98 years). Testing was performed in two sessions, familiarization with procedures in the first session and the tests themselves (pre- and post-test and intervention) in the second, with a 24- to 48-hour interval between. The pre-test consisted of three trials of passive knee extension to the point of increased tension in the hamstrings, defined as ROMMax. The resistance torque recorded at ROMMax was defined as torqueMax. Six 30-second constant torque stretches were performed at 100% of the torqueMaxreached in the pre-test in one lower limb only (intervention), with the contralateral limb used as control. The torque measured at an identical ROM before (pre-test) and after (post-test) the intervention was defined as torqueROM, and represented stiffness in this study. Reliability of the ROMMax, torqueMax, and torqueROMwas assessed via intraclass correlation coefficients (ICC3, k) and standard error of the measurements (SEM). Comparison between dancers and non-dancers, control, and intervention conditions for all dependent variables was performed using ANOVA repeated measures followed by Tukey post hoc comparisons to highlight any interaction. The submaximal stretch intensity applied caused torqueROM to decrease in both D and ND groups (p < 0.01), indicating a decrease in stiffness, but no difference between the groups was found. A significantly greater increase in ROMMax was found for the D group compared to the ND group (p < 0.01), suggesting that other aspects in addition to MTU biomechanical adaptations may have played a role in the ROMMax increase, especially for the D group. Further research is needed to explore what those other adaptations are. Meanwhile, coaches and physical therapists should be aware that dancers may require different stretch training protocols than non-dancers.
Purpose: Investigate the impact of 12-weeks' moderate-intensity resistance training on psychological parameters in ambulatory adults with Facioscapulohumeral, Becker, and Limb-girdle muscular dystrophy. Methods: Seventeen adults with Facioscapulohumeral (n ¼ 6), Limb-girdle (n ¼ 6; types 2A, 2B, 2L, and 2I), or Becker (n ¼ 5) muscular dystrophy took part. Participants were tested at baseline (PRE), after a 12week control period (PRE2), and after a 12-week supervised resistance training programme (POST). Training included multi-joint and single-joint resistance exercises. Outcomes from self-report questionnaires were health-related quality of life, depressive symptoms, trait anxiety, self-esteem, and physical self-worth. Results: No difference in outcome measures, except depressive symptoms, was found in the control period (PRE to PRE2). Symptoms of depression were reduced by 9% from PRE to PRE2 (p < 0.05) and by a further 19% from PRE2 to POST (p < 0.05). Other changes from PRE2 to POST were that trait anxiety reduced by 10%, self-esteem increased by 10%, physical self-worth increased by 20%, and quality of life improved in 8 domains (p < 0.05). Conclusion: These findings demonstrate the positive impact of moderate-intensity resistance training on psychological health and quality of life in adults with Facioscapulohumeral, Becker, and Limb-girdle muscular dystrophies. ä IMPLICATIONS FOR REHABILITATIONResistance training can have a positive impact on psychological health and quality of life in adults with Facioscapulohumeral, Becker, and Limb-girdle muscular dystrophy. Healthcare professionals should consider including moderate-intensity resistance training within the management and treatment programmes of adults with Facioscapulohumeral, Becker, and Limb-girdle muscular dystrophy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.