The obligate intracellular bacterium Chlamydia trachomatis rapidly induces its own entry into host cells. Initial attachment is mediated by electrostatic interactions to heparan sulfate moieties on the host cell, followed by irreversible binding to an unknown secondary receptor. This secondary binding leads to the recruitment of actin to the site of attachment, formation of an actin-rich, pedestallike structure, and finally internalization of the bacteria. How chlamydiae induce this process is unknown. We have identified a high-molecular-mass tyrosine-phosphorylated protein that is rapidly phosphorylated on attachment to the host cell. Immunoelectron microscopy studies revealed that this tyrosine-phosphorylated protein is localized to the cytoplasmic face of the plasma membrane at the site of attachment of surface-associated chlamydiae. The phosphoprotein was isolated by immunoprecipitation with the antiphosphotyrosine antibody 4G10 and identified as the chlamydial protein CT456, a hypothetical protein with unknown function. The chlamydial protein (Tarp) appears to be translocated into the host cell by type III secretion because it is exported in a Yersinia heterologous expression assay. Phosphotyrosine signaling across the plasma membrane preceded the recruitment of actin to the site of chlamydial attachment and may represent the initial signal transduced from pathogen to the host cell. These results suggest that C. trachomatis internalization is mediated by a chlamydial type III-secreted effector protein. Chlamydia trachomatis is a Gram-negative obligate intracellular bacterium that is a leading cause of sexually transmitted diseases and blindness worldwide (1). Chlamydiae have a biphasic developmental cycle characterized by an infectious but metabolically inactive extracellular form, called the elementary body (EB), that initiates infection by attaching to and inducing uptake by the host cell. Once internalized, chlamydiae remain within a membrane-bound vacuole termed an inclusion, where the organism differentiates into the larger, metabolically active reticulate body. Reticulate bodies replicate and differentiate back to EBs before release at the end of the developmental cycle.EBs attach to and enter cultured eukaryotic cells so efficiently that the process has been termed parasite-specified phagocytosis (2). Despite the importance of this event to chlamydial pathogenesis, little consensus exists regarding the identity of the chlamydial ligands and respective host receptors (for a review, see ref.3). Considerable evidence suggests that electrostatic interactions mediate attachment with heparan sulfate-like proteoglycans involved in an initial, reversible interaction with the eukaryotic host cell for many, but not all, strains and species of chlamydiae (4 -9). Recent studies using chemically mutagenized cell lines distinguished a subsequent, irreversible secondary binding step in the entry process, although the receptor was not identified (8, 10). Entry of C. trachomatis requires participation of the actin cy...
The possibility that bacteria may have evolved strategies to overcome host cell apoptosis was explored by using Rickettsia rickettsii, an obligate intracellular Gram-negative bacteria that is the etiologic agent of Rocky Mountain spotted fever. The vascular endothelial cell, the primary target cell during in vivo infection, exhibits no evidence of apoptosis during natural infection and is maintained for a sufficient time to allow replication and cell-to-cell spread prior to eventual death due to necrotic damage. Prior work in our laboratory demonstrated that R. rickettsii infection activates the transcription factor NF-B and alters expression of several genes under its control. However, when R. rickettsiiinduced activation of NF-B was inhibited, apoptosis of infected but not uninfected endothelial cells rapidly ensued. In addition, human embryonic fibroblasts stably transfected with a superrepressor mutant inhibitory subunit IB that rendered NF-B inactivatable also underwent apoptosis when infected, whereas infected wild-type human embryonic fibroblasts survived. R. rickettsii, therefore, appeared to inhibit host cell apoptosis via a mechanism dependent on NF-B activation. Apoptotic nuclear changes correlated with presence of intracellular organisms and thus this previously unrecognized proapoptotic signal, masked by concomitant NF-B activation, likely required intracellular infection. Our studies demonstrate that a bacterial organism can exert an antiapoptotic effect, thus modulating the host cell's apoptotic response to its own advantage by potentially allowing the host cell to remain as a site of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.