Background-Diabetes is associated with increased risk of mortality as a consequence of acute myocardial infarction. This study determined whether rosiglitazone (ROSI) could reduce myocardial infarction after ischemia/reperfusion injury. Methods and Results-Male Lewis rats were anesthetized, and the left anterior descending coronary artery was ligated for 30 minutes. After reperfusion for 24 hours, the ischemic and infarct sizes were determined. ROSI at 1 and 3 mg/kg IV reduced infarct size by 30% and 37%, respectively (PϽ0.01 versus vehicle). Pretreatment with ROSI (3 mg · kg Ϫ1 · d
The recent emergence of bat-borne zoonotic viruses warrants vigilant surveillance in their natural hosts. Of particular concern is the family of coronaviruses, which includes the causative agents of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and most recently, Coronavirus Disease 2019 (COVID-19), an epidemic of acute respiratory illness originating from Wuhan, China in December 2019. Viral detection, discovery, and surveillance activities were undertaken in Myanmar to identify viruses in animals at high risk contact interfaces with people. Free-ranging bats were captured, and rectal and oral swabs and guano samples collected for coronaviral screening using broadly reactive consensus conventional polymerase chain reaction. Sequences from positives were compared to known coronaviruses. Three novel alphacoronaviruses, three novel betacoronaviruses, and one known alphacoronavirus previously identified in other southeast Asian countries were detected for the first time in bats in Myanmar. Ongoing land use change remains a prominent driver of zoonotic disease emergence in Myanmar, bringing humans into ever closer contact with wildlife, and justifying continued surveillance and vigilance at broad scales.
Dromedary, or one-humped, camels Camelus dromedarius are an almost exclusively domesticated species that are common in arid areas as both beasts of burden and production animals for meat and milk.Currently, there are approximately 30 million dromedary camels, with highest numbers in Africa and the Middle East. The hardiness of camels in arid regions has made humans more dependent on them, especially as a stable protein source. Camels also carry and may transmit disease-causing agents to humans and other animals. The ability for camels to act as a point source or vector for disease is a concern due to increasing human demands for meat, lack of biosafety and biosecurity protocols in many regions, and a growth in the interface with wildlife as camel herds become sympatric with non-domestic species. We conducted a literature review of camel-borne zoonotic diseases and found that the majority of publications (65%) focused on Middle East respiratory syndrome (MERS), brucellosis, Echinococcus granulosus, and Rift Valley fever. The high fatality from MERS outbreaks during 2012-2016 elicited an immediate response from the research community as demonstrated by a surge of MERS-related publications. However, we contend that other camel-borne diseases such as Yersinia pestis, Coxiella burnetii, and Crimean-Congo hemorrhagic fever are just as important to include in surveillance efforts. Camel populations, particularly in sub-Saharan Africa, are increasing exponentially in response to prolonged droughts, and thus, the risk of zoonoses increases as well. In this review, we provide an overview of the major zoonotic diseases present in dromedary camels, their risk to humans, and recommendations to minimize spillover events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.