The association between the amount of alcohol consumed and the incidence of CRC was not significant at moderate intake levels. Moderate alcohol consumption was associated with a reduced CRC risk in study populations with greater adherence to a Mediterranean diet, where wine contributed substantially to the alcoholic beverage consumed. Other factors such as obesity, folate deficiency, and genetic susceptibility may contribute additional CRC risk for those consuming alcohol. To minimize CRC risk, appropriate recommendations should encourage intakes below 30 g of alcohol each day.
Activation of angiotensin II (Ang II) signaling during aging increases reactive oxygen species (ROS) leading to vascular senescence, a process linked to the onset and progression of cardiovascular diseases (CVD). Consumption of fruits and vegetables, particularly berries, is associated with decreased incidence of CVD, which has mainly been attributed to the polyphenol content of these foods. Thus, the objective of this study was to investigate the role of blackberry (BL), raspberry (RB), and black raspberry (BRB) polyphenol extracts in attenuating Ang II-induced senescence in vascular smooth muscle cells (VSMCs) and to determine the molecular mechanisms involved. BL, RB and BRB polyphenol extracts (200 μg ml) attenuated Ang II-induced senescence, denoted by decreased number of cells positive for senescence associated β-galactosidase (SA-β-gal) and down-regulation of p21 and p53 expression, which were associated with decreased ROS levels and Ang II signaling. BL polyphenol extract increased superoxide dismutase (SOD) 1 expression, attenuated the up-regulation of Nox1 expression and the phosphorylation of Akt, p38MAPK and ERK1/2 induced by Ang II, and reduced senescence in response to Nox1 overexpression. In contrast, RB and BRB polyphenol extracts up-regulated the expression of SOD1, SOD2, and glutathione peroxidase 1 (GPx1), but exerted no effect on Nox1 expression nor on senescence induced by Nox1 overexpression. BRB reduced signaling similar to BL, while RB was unable to reduce Akt phosphorylation. Furthermore, we demonstrated that inhibition of Akt, p38MAPK and ERK1/2 as well as down-regulation of Nox1 by siRNA prevented senescence induced by Ang II. Our findings indicate that Ang II-induced senescence is attenuated by BL polyphenols through a Nox1-dependent mechanism and by RB and BRB polyphenols in a Nox1-independent manner, likely by increasing the cellular antioxidant capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.