We report on the thermally activated flux flow dependency on the doping dependent mixed state in NaFe1−xCoxAs (x = 0.01, 0.03, and 0.07) crystals using the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found clearly that irrespective of the doping ratio, magnetoresistivity showed a distinct tail just above the T
c,offset associated with the thermally activated flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature dependence of the activation energy follows the relation with q = 1.5 in all studied crystals. The magnetic field dependence of the activation energy follows a power law of where the exponent α is changed from a low value to a high value at a crossover field of B = ∼2 T, indicating the transition from collective to plastic pinning in the crystals. Finally, it is suggested that the 3D vortex phase is the dominant phase in the low temperature region as compared to the TAFF region in our series samples.
We investigate changes in the vortex pinning mechanism caused by proton irradiation through the measurement of the in-plane electrical resistivity for H//c in a pristine and two proton-irradiated (total doses of 1 × 1015 and 1 × 1016 cm−2) SmBa2Cu3O7-δ (SmBCO) superconducting tapes. Even though proton irradiation has no effect on the critical temperature (Tc), the resulting artificial point defect causes an increase in normal state electrical resistivity. The electrical resistivity data around Tc shows no evidence of a phase transition to the vortex glass state but only broadens with increasing magnetic field due to the vortex depinning in the vortex liquid state. The vortex depinning is well interpreted by a thermally activated flux flow model in which the activation energy shows a nonlinear temperature change $${\boldsymbol{U}}{\boldsymbol{(}}{\boldsymbol{T}},{\boldsymbol{H}}{\boldsymbol{)}}{\boldsymbol{=}}{{\boldsymbol{U}}}_{{\boldsymbol{0}}}{\boldsymbol{(}}{\boldsymbol{H}}{\boldsymbol{)}}{{\boldsymbol{(}}{\bf{1}}-{\boldsymbol{T}}{\boldsymbol{/}}{{\boldsymbol{T}}}_{{\boldsymbol{c}}}{\boldsymbol{)}}}^{{\boldsymbol{q}}}$$U(T,H)=U0(H)(1−T/Tc)q (q = 2). The field dependence of activation energy shows a $${{\boldsymbol{U}}}_{{\bf{0}}}{\boldsymbol{ \sim }}{{\boldsymbol{H}}}^{-{\boldsymbol{\alpha }}}$$U0~H−α with larger exponents above 4 T. This field dependence is mainly due to correlated disorders in pristine sample and artificially created point defects in irradiated samples. Compared with the vortex pinning due to correlated disorders, the vortex pinning due to the appropriate amount of point defects reduces the magnitude of Uo(H) in the low magnetic field region and slowly reduces Uo(H) in high magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.